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Chapter 1

Introduction

In these notes we try to motivate and develop some of the basic ideas and tools of spectral triples. Spectral
triples play several related roles in noncommutative geometry. The first and most important is their role in
index theory, and we focus on this as the main reason for looking at spectral triples.

The use of the Atiyah-Singer index theorem in identifying the obstructions to quantisation in gauge field theory
known as anomalies is a paradigm for how index theory, and the geometric computation of indices, can help the
modern physicist.

The second reason is the role of spectral triples as geometric spaces. Many spectral triples possess extra structure
which enable us to do geometry by analogy with the spectral triples of classical manifolds. For this reason we
will begin by looking at examples arising from the geometry of manifolds. Otherwise, however, we will not focus
on the additional structures one may impose on a spectral triple. The interested reader can pursue these topics
in [GVF, V], where very good accounts are presented.

Another physics reason for looking at spectral triples which we won’t have time for is the role they are playing
in physics, especially providing a noncommutative interpretation of the standard model of particle physics. The
work by Bellissard using noncommutative geometry techniques to deduce the integrality of the quantum Hall
current has also been influential.

If one was happy to simply accept the notion of spectral triple without motivation, then the study of spectral
triples would devolve into some fancy functional analysis. This would belie the depth of the subject, its
applications, and interpretations. Also, if one never left functional analysis, the range of examples would
be almost nonexistent.

The examples arise from understanding how geometry, even very singular geometry, gives rise to the data defining
a spectral triple. Even in highly noncommutative examples, one often proceeds by constructing analogues of
structures which arise in differential or algebraic geometry. Frequently theorems and proofs are suggested by
analogy with classical geometry.

To address the geometric fundamentals along with the index theoretic aspects, these notes focus on Dirac
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type operators on manifolds. A fair amount of differential geometry is assumed, but some points are recapped
throughout. Also, we suppose that people know what a C∗-algebra is, and something of their representation
theory on Hilbert spaces.

General references for some of the topics covered include:

Presentations of index theory on manifolds which adapt well to noncommutative geometry can be found in
[BGV, HR, LM, G].

The basics of noncommutative geometry and spectral triples can be found in [GVF, Lan]. More sophisticated
applications appear in [C0, C1] and [CMa].

Noncommutative algebraic topology, K-theory and K-homology, are beautifully presented in [HR]. More intro-
ductory books on K-theory are [RLL] and [WO]. For K-theory of spaces see [AK]. Noncommutative differential
topology is cyclic homology and cohomology. The description in [C1] is excellent, and further information is
available in [L].

A wonderful exposition of the intertwining of spectral triples and the index theorem in noncommutative geometry
is [H] (also available on Nigel Higson’s website).

These texts all have references to original papers which are also important to read.

Acknowledgements I am deeply indebted to my collaborators Alan Carey, Sergey Neshveyev, Ryszard Nest,
David Pask, John Phillips, Aidan Sims, Fyodor Sukochev and Joe Varilly. Thanks go to Roger Senior for reading
an earlier version of these notes.

Many thanks to Yoshiaki Maeda and Toshikazu Natsume for organising the workshop and inviting me to speak.

Conventions

Hilbert spaces are separable and complex. The bounded linear operators on a Hilbert spaceH are denoted B(H).
The ideal of compact operators on H is denoted K(H). The Calkin algebra is denoted Q(H) := B(H)/K(H).

C∗-algebras are separable and complex, and almost always unital in these notes.

M will always be an n-dimensional compact oriented manifold. Usually we will suppose that it has a Riemannian
metric g.

X is always a compact Hausdorff space, C(X) the C∗-algebra of continuous functions on X.

We let Λ∗M := Λ∗T ∗M = ⊕nk=0ΛkT ∗M denote the bundle of exterior differential forms, and Γ(Λ∗M) the
smooth sections of Λ∗M .

4



Chapter 2

Preliminaries and the first example

2.1 The Fredholm index

The roots of noncommutative geometry lie in index theory. The central classical problem here is to compute an
integer, called the index, associated with certain special operators on manifolds, the elliptic pseudodifferential
operators. The solution to this problem was provided by Atiyah and Singer in the 1960’s, and we will discuss
numerous examples and what the theorem says later. In this section, we will just review what the Fredholm
index is. The discussion of the index in [LM] is quite good and set in the context of the Atiyah-Singer index
theorem.

Definition 2.1. Let H1,H2 be Hilbert spaces and F : H1 → H2 a bounded linear operator. We say that F is
Fredholm if

1) range(F ) is closed in H2, and

2) ker(F ) is finite dimensional, and

3) coker(F ) := H2/range(F ) is finite dimensional. If F is Fredholm we define

Index(F ) = dim ker(F )− dim coker(F ).

Example 1. The simplest Fredholm operator is the shift operator S : l2(N)→ l2(N). This is defined by

S

∞∑
i=1

aiei =
∞∑
i=1

aiei+1, ai ∈ C.

The range of S is codimension 1, and so is closed. The kernel of S is {0}, and so

Index(S) = dim ker(S)− dim coker(S) = 0− 1 = −1.

Example 2. If F : H → H is a Fredholm operator and F is self-adjoint, then Index(F ) = 0. This is because
in general coker(F ) = ker(F ∗).
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Definition 2.2. A bounded linear operator T : H1 → H2 is called compact if T maps any bounded sequence
{ξk}k≥0 ∈ H1 to a sequence {Tξk}k≥0 ∈ H2 with a convergent subsequence. Equivalently, T is compact if it is
the norm limit of a sequence of finite rank operators.

The set of compact operators mapping a Hilbert space H to itself is denoted K(H) and is an ideal in B(H). It
is the only norm closed ideal in B(H). We introduce compact operators at this point because they allow us to
give a characterisation of Fredholm operators.

Proposition 2.3. Let F : H1 → H2 and S : H2 → H1 be bounded linear operators such that FS − IdH2 and
SF−IdH1 are compact operators (on H2 and H1 respectively). Then F, S are Fredholm operators. The converse
is also true.

Remark Given F and S as in the Proposition, S is said to be a parametrix or approximate inverse for F , and
vice versa.

Thus the Fredholm operators are precisely those which are invertible modulo compact operators. If we denote
by

q : B(H)→ Q(H) := B(H)/K(H)

the quotient map onto the Calkin algebra Q(H), the image of the Fredholm operators F : H → H lies in the
group of invertibles of Q(H).

Exercise Show that if F, S : H → H are both Fredholm operators, then FS : H → H is also Fredholm.

We now summarise the important properties of the index of Fredholm operators.

Theorem 2.4. Let F denote the set of Fredholm operators on a fixed Hilbert space H, and let π0(F) denote
the (norm) connected components of F . The index is locally constant on F and induces a bijection

Index : π0(F)→ Z. (2.1)

Moreover, the index satisfies

Index(F ∗) = − Index(F ), Index(FS) = Index(F ) + Index(S),

and so the induced map (2.1) is a group isomorphism.

In particular, any two operators with the same index lie in the same connected component of F and the index
is constant on these components (which are open in the norm topology). It is also worth observing that if F is
Fredholm and T is compact then F + T is Fredholm and

Index(F + T ) = Index(F ).

Thus the index is constant under compact perturbations and sufficiently small norm perturbations. This gives
us strong invariance properties for the index. For instance, if {Ft}t∈[0,1] is a norm continuous path of Fredholm
operators, then Index(Ft) is constant.

By considering operators on manifolds which give rise to Fredholm operators on Hilbert space, we will be able
to construct invariants of the underlying manifold. Amazingly, we can frequently extend this same strategy to
noncommutative spaces.
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2.2 Clifford Algebras

Clifford algebras play a central role in the construction and analysis of many important geometric operators on
manifolds. It is worth introducing them early, as it will streamline much of what we will do. Basic references
for this material include [ABS, BGV, GVF, LM].

Let V be a finite dimensional real vector space, and (·|·) : V ×V → R a bilinear inner product, so for u, v, w ∈ V
and λ ∈ R

(v|w) = (w|v), (λv|w) = λ(v|w), (v + u|w) = (v|w) + (u|w).

We suppose also that the inner product is nondegenerate so that (v|v) = 0⇒ v = 0.

Definition 2.5. The Clifford algebra Cliff(V, (·|·)) (we write Cliff(V ) when (·|·) is understood) is the unital
associative algebra over R generated by all v ∈ V and λ ∈ R subject to

v · w + w · v = −2(v|w)IdCliff(V ).

There are several other ways to define the Clifford algebra, but this is enough for us.

Observe that if v, w are orthogonal, they anticommute. Indeed, if the inner product were zero, we would simply
wind up with the exterior algebra of V . In fact

Lemma 2.6. The two algebras Λ∗V and Cliff(V ) are linearly isomorphic (although not isomorphic as alge-
bras).

Proof. We define the map m : Λ∗V → Cliff(V ) by

m(v1 ∧ v2 ∧ · · · ∧ vk) = v1 · v2 · · · · · vk.

We leave it as an exercise to check this is an isomorphism.

Hence we can regard the Clifford algebra as the exterior algebra with a deformed product. In [BGV] the map
m is called a quantization map.

Exercise Write down the inverse to the isomorphism m.

Most of the time, we actually want the complexification of the Clifford algebra, Cliff(V ) = Cliff(V ) ⊗ C.
This is more compatible with working on complex Hilbert space, and the complexifications are actually simpler
in many ways.

Exercise Show that
Cliff(R) = C⊕ C, Cliff(R2) = M2(C).

More generally we have

Cliff(Rk) =
{
M2(k−1)/2(C)⊕M2(k−1)/2(C) k odd

M2k/2(C) k even .

A useful characterisation is the following.

7



Lemma 2.7. If A is a complex unital associative algebra and c : V → A is a linear map satisfying

c(v)c(w) + c(w)c(v) = −2(v|w)1A,

for all v, w ∈ V , then there is a unique algebra homomorphism c̃ : Cliff(V ) → A extending c. The analogous
statement is true for real Clifford algebras.

There is a special element inside the Clifford algebra called the (complex) volume form. Suppose V is n-
dimensional and let e1, e2, . . . , en be an orthonormal basis of V . Define

ωC = i[(n+1)/2]e1 · e2 · · · · en.

Then ω2
C = 1 and for all v ∈ V we have

v · ωC = (−1)n−1ωC · v.

If we give the Clifford algebra the adjoint

(λe1 · · · ek)∗ = (−1)kλ̄ek · · · e1

then the Clifford algebra becomes a C∗-algebra, and ωC = ω∗C.

It is useful in what follows to express the Clifford multiplication by v ∈ V in terms of the exterior algebra. To
do this, we need to recall the interior product on Λ∗V . For v ∈ V and v1 ∧ v2 ∧ · · · ∧ vk we define

vx(v1 ∧ v2 ∧ · · · ∧ vk) =
k∑
i=1

(−1)i+1(vi|v)v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vk,

where ˆ denotes omission. The interior product satisfies

vx(ϕ ∧ ψ) = (vxϕ) ∧ ψ + (−1)kϕ ∧ (vxψ), ϕ ∈ ΛkV,

and so vx◦vx= 0. Also observe that v̄x is the adjoint of v∧ for the inner product on Λ∗V (see below), where
v̄ is the complex conjugate vector. Then under the isomorphism Λ∗V ∼= Cliff(V ), we have for v ∈ V and
ϕ ∈ Cliff(V )

v · ϕ = v ∧ ϕ− vxϕ. (2.2)

Since for all ϕ ∈ Λ∗V we have
v ∧ (wxϕ) + wx(v ∧ ϕ) = (v|w)ϕ

one can check that the action of V on Λ∗V defined by the formula in Equation (2.2) satisfies

v · w + w · v = −2(v|w)IdV

and so extends to an action of Cliff(V ) on Λ∗V . Similarly right multiplication by v gives

ϕ · v = (−1)k(v ∧ ϕ+ vxϕ), ϕ ∈ ΛkV.

By associativity, the left and right actions of Cliff(V ) commute with one another, so Λ∗V carries two commuting
actions of the Clifford algebra. The complexification of Λ∗V also carries commuting representations of the
complexified Clifford algebra.
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If V has an inner product, as we suppose, then we define a sesquilinear (bilinear if V is real) map

(·|·)k : ΛkV × ΛkV → R

by

(u1 ∧ · · · ∧ up|v1 ∧ · · · ∧ vp)k := det

 (u1|v1) · · · (u1|vp)
...

. . .
...

(up|v1) · · · (up|vp)

 .

Choose an oriented orthonormal basis e1, ..., en of V and let σ = e1 ∧ · · · ∧ en. For λ ∈ ΛkV , the map

λ ∧ · : Λn−kV → ΛnV,

is linear, and as ΛnV is one dimensional, there exists a unique fλ ∈ Hom(Λn−kV,R) such that

λ ∧ µ = fλ(µ)σ, ∀µ ∈ Λn−kV.

As Λn−kV is an inner product space, every such linear form is given by the inner product with a fixed element
of Λn−kV , which in this case depends on λ. Denote this element by ∗λ. So

fλ(µ) = (µ| ∗ λ)n−k,

and
λ ∧ µ = (µ| ∗ λ)n−kσ, ∀µ ∈ Λn−kV.

The map
∗ : ΛkV → Λn−kV, λ −→ ∗λ

is called the Hodge Star Operator.

Lemma 2.8. If V has a positive definite inner product, and λ, µ ∈ ΛkV , then

∗(∗λ) = (−1)k(n−k)λ,

λ ∧ ∗µ = µ ∧ ∗λ = (λ|µ)kσ.

This discussion of actions of the Clifford algebra on Λ∗V and the Hodge star operator all makes sense for real
Clifford algebras. Now in general, ωC is not an element of the real Clifford algebra (supposing V to be the
complexification of a real vector space). Nevertheless, when it is in the real Clifford algebra we will see that ωC
and the Hodge star operator are closely related.

All of this continues to make sense on a manifold M . Here we consider the vector bundle Λ∗M and the sections
Γ(Λ∗M) with all the above operations defined pointwise. Similarly, we let Cliff(M) denote the sections of the
bundle of algebras Cliff(T ∗M, g), where g is a Riemannian inner product on T ∗M .
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2.3 The Hodge-de Rham operator

We build our first example out of ingredients immediately to hand. Basic references for all this material include
[BGV, LM]. We let L2(Λ∗M, g) be the Hilbert space completion of the exterior bundle Λ∗T ∗CM with respect to
the inner product

〈ω, ρ〉g =
∫
M

ω ∧ ∗ρ.

Here ∗ is the Hodge ∗-operator, described in the previous Section.

This inner product ensures that forms of different degrees are orthogonal, and is positive definite since

ω ∧ ∗ω̄ = (ω|ω̄)dvol.

The exterior derivative d extends to a closed unbounded operator on L2(Λ∗M, g), [HR, Lemma 10.2.1]. We let
d∗ be the adjoint of the exterior derivative with respect to this inner product. We let D = d+ d∗, and call this
the Hodge-de Rham operator. This operator is formally self-adjoint (and so symmetric) and so by [HR,
Corollary 10.2.6], extends to a self-adjoint operator on L2(Λ∗M, g).

2.3.1 The symbol and ellipticity

Before analysing this example any further, we need to recall the principal symbol of a differential operator
D : Γ(E) → Γ(F ) between sections of vector bundles E,F over M . The principal symbol σD associates to
each x ∈ M and ξ ∈ T ∗xM a linear map σD(x, ξ) : Ex → Fx defined as follows. If D is order m and in local
coordinates we have

D =
∑
|α|≤m

Mα(x)
∂|α|

∂xα1
1 ∂xα2

2 · · · ∂x
αn
n
, ξ =

∑
ξkdx

k ∈ T ∗xM

then
σD(x, ξ) =

∑
|α|=m

Mα(x)ξα1
1 · · · ξαnn .

(There is usually a factor of im in the symbol to make it compatible with the Fourier transform and operators
on real bundles, but we won’t worry). This local coordinate description can be pasted together to give a globally
defined map

σD : T ∗M → Hom(E,F ).

Lemma 2.9. [HR, Chapter 10] Let D be a first order differential operator on a smooth compact manifold M .
Then for f ∈ C∞(M)

[D, f ] = σD(df).

Proof. Just compute.

10



Let’s apply this result to the Hodge-de Rham operator. First observe that

(d(fω)|ρ) = (df ∧ ω|ρ) + (fdω|ρ)
= (ω|df̄xρ) + (dω|f̄ρ) since (v∧)∗ = v̄x

= (ω|df̄xρ) + (ω|d∗(f̄ρ))

So
(ω|d∗(f̄ρ)) = (ω|f̄d∗ρ)− (ω|df̄xρ).

Since this is true for all forms ω, ρ and all smooth functions f , we deduce that for all forms ϕ and functions f

d∗(fϕ) = fd∗ϕ− dfxϕ.

Now for ϕ ∈ Γ(Λ∗M) we can compute

[d+ d∗, f ]ϕ = df ∧ ϕ+ fdϕ− dfxϕ+ fd∗ϕ− fdϕ− fd∗ϕ = df ∧ ϕ− dfxϕ.

Hence the principal symbol of d+d∗ is given by the left Clifford action on Λ∗M . In particular, for all f ∈ C∞(M),
the commutator [d+ d∗, f ] extends to a bounded operator on L2(Λ∗M, g).

Before moving on, let me quote another useful result from the theory of pseudodifferential operators.

Lemma 2.10. Suppose that Q,P : Γ(E) → Γ(E) are two (pseudo)differential operators on the same vector
bundle of orders q, p ≥ 0 respectively. If their principal symbols commute, then

order([Q,P ]) ≤ q + p− 1.

Since multiplication by f has principal symbol fId, it commutes with any endomorphism, and so for a first
order operator like d+ d∗, the commutator is order zero, namely an endomorphism.

Definition 2.11. Let P : Γ(E) → Γ(F ) be a differential operator with principal symbol σP : T ∗M →
Hom(E,F ). If for all x ∈ M and 0 6= ξ ∈ T ∗xM we have σP (x, ξ) is an isomorphism, we call P an ellip-
tic operator.

Since ξ ·ξ· = −‖ξ‖2 where the norm is the one coming from the inner product in T ∗xM , we see that the Hodge-de
Rham operator has invertible principal symbol for all ξ 6= 0, and so d+ d∗ is elliptic.

2.3.2 Ellipticity and Fredholm properties

Observe also that if we define γ : Γ(Λ∗M)→ Γ(Λ∗M) by

γ(ω) = (−1)kω, ω ∈ ΛkM

then since both d and d∗ change the degree of a form by one we have

γ(d+ d∗) = −(d+ d∗)γ.
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Since γ2 = 1, γ has ±1 eigenvalues (on ΛevenM and ΛoddM) and we can write

Λ∗M = ΛevenM ⊕ ΛoddM, γ =
(

1 0
0 −1

)
, d+ d∗ =

(
0 (d+ d∗)−

(d+ d∗)+ 0

)
.

The differential operator (d+ d∗)+ : Γ(ΛevenM)→ Γ(ΛoddM) has adjoint (d+ d∗)− : Γ(ΛoddM)→ Γ(ΛevenM).

You can probably guess that I am going to tell you that this operator (d + d∗)+ : L2(ΛevenM) → L2(ΛoddM)
is Fredholm and the index means something really interesting.

Well, yes, but we need to be a little careful. The first problem is that d + d∗ is not a bounded operator on
L2(Λ∗M, g), and so the definition of Fredholm doesn’t even make sense as it stands. Here is the standard
resolution of the problem.

Definition 2.12. Let M be a compact oriented n-dimensional Riemannian manifold. For s ≥ 0, define

L2
s(Λ
∗M, g) = {ξ ∈ L2(Λ∗M, g) : (1 + ∆)s/2ξ ∈ L2(Λ∗M, g)},

where ∆ = (d+ d∗)2 is the Hodge Laplacian. Then L2
s(Λ
∗M, g) is a Hilbert space for the inner product

〈ξ, η〉s := 〈ξ, η〉+ 〈(1 + ∆)s/2ξ, (1 + ∆)s/2η〉

and we call this the s-th Sobolev space.

Remark We can do this for any vector bundle by choosing a connection ∇, and defining the connection
Laplacian ∇∗∇ which is positive. Other methods include a Fourier definition, and interpolation between integer
Sobolev spaces.

The point of Sobolev spaces for us is the following easy proposition.

Proposition 2.13. A differential operator D : Γ(Λ∗M) → Γ(Λ∗M) of order m ≥ 0 extends to a bounded
operator D : L2

s(Λ
∗M)→ L2

s−m(Λ∗M) for all s ≥ m.

What we would like to do is define the index of (d + d∗)+ to be the index of this operator from L2
s → L2

s−1.
However, we need to know that the index is independent of s.

Theorem 2.14. Let P : Γ(E)→ Γ(F ) be an elliptic (differential) operator of order m ≥ 0 on M . Then

1) For any open set U ⊂M and any ξ ∈ L2
s(E),

Pξ|U ∈ C∞ ⇒ ξ|U ∈ C∞ (2.3)

2) For each s ≥ m, P extends to a Fredholm operator P : L2
s(E)→ L2

s−m(F ) whose index is independent of s.

3) For each s ≥ m there is a constant Cs such that

‖ξ‖s ≤ Cs(‖ξ‖s−m + ‖Pξ‖s−m) Elliptic estimate (2.4)

for all ξ ∈ L2
s(E). Hence the norms ‖ · ‖s and ‖ · ‖s−m + ‖P · ‖s−m on L2

s(E) are equivalent.

12



The key to proving this theorem is the elliptic estimate. Once this is proved, the rest can be deduced reasonably
simply.

So the index can be defined in a sensible way, but can it be related to the index of a bounded linear operator on
L2(Λ∗M, g) without all this Sobolev space stuff? Do we want to do that? Would we learn any more? Answers:
Yes, yes, yes.

Proposition 2.15. Let D be a self-adjoint first order elliptic differential operator on M . Then the densely
defined operator (1 + D2)−1/2 : L2(Λ∗M, g) → L2(Λ∗M, g) is bounded and extends to a compact operator on
L2(Λ∗M, g). Hence the operator D(1 +D2)−1/2 is self-adjoint Fredholm.

Proof. The operator (1+D2)−1/2 maps L2 = L2
0 onto L2

1, and is of norm (at most) one. The inclusion of L2
1 into

L2
0 is a compact linear operator by the Rellich Lemma, and so (1 +D2)−1/2 : L2 → L2 is a compact operator.

The second statement follows because(
D(1 +D2)−1/2

)2

= D2(1 +D2)−1 = 1− (1 +D2)−1

and so D(1 +D2)−1/2 has a parametrix (itself), and so is Fredholm.

These are the key tools required to show that if we can split D =
(

0 D−
D+ 0

)
like the d + d∗ operator, the

index of D+(1 +D2)−1/2 equals that of all the closed extensions of D on Sobolev spaces. We will do this shortly
in a more general context.

Before discussing the index of (d+ d∗)+, we quote one further result about elliptic differential operators.

Theorem 2.16. [LM, Thm 5.5] Let P : Γ(E) → Γ(E) be an elliptic self-adjoint differential operator over a
compact Riemannian manifold. Then there is an L2-orthogonal direct sum decomposition

Γ(E) = kerP ⊕ Image P.

2.3.3 The index of the Hodge-de Rham operator

To work out the index of (d+ d∗)+ = 1
4 (1− γ)(d+ d∗)(1 + γ), we are going to need a little more machinary. Let

∆ = (d+ d∗)2 be the Laplacian on forms, and observe ∆ = dd∗ + d∗d. Then Image(∆) = Image(d) + Image(d∗)
and so by Theorem 2.16

Proposition 2.17 (The Hodge Decomposition Theorem). Let M be a compact oriented Riemannian mani-
fold, and let Hp denote the kernel of ∆ = (d + d∗)2 on p-forms. Then there is an L2-orthogonal direct sum
decomposition

Γ(ΛpM) = Hp ⊕ Image(d)⊕ Image(d∗), p = 0, ..., n. (2.5)

In particular, there is an isomorphism

Hp ∼= Hp
dR(M ; R), p = 0, ..., n,

where Hp
dR(M ; R) denotes the p-th de Rham cohomology group.
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Proof. The first statement follows directly from Theorem 2.16. For the second, we observe that Equation (2.5)
says

Hp ⊕ Image(d) = coker d∗ = ker d.

Hence
Hp
dR(M ; R) =

ker d
Image(d)

= Hp.

It does not take long now to figure out

Theorem 2.18. The index of (d+ d∗)+ is

Index(d+ d∗)+ =
n∑
k=0

(−1)k dimHk
dR(M ; R)

= χ(M) = the Euler characteristic of M
= a homotopy invariant of M
= independent of the metric g. (2.6)

These index calculations depend on the analysis of pseudodifferential operators, which we have omitted. In
particular, it is the pseudodifferential machinery which allows us to see that for P elliptic, Pu ∈ C∞ ⇒ u ∈ C∞.
From there it is not hard to see that the kernel and cokernel of (d + d∗)+ consist of smooth sections, and the
index is independent of s.

For an introduction to this pseudodifferential theory, see [LM] or [G]. Alternatively, one can develop an abstract
pseudodifferential calculus for spectral triples, and deduce the same results: we have included a brief outline of
this calculus in Section 5.4.

2.4 The definition of a spectral triple

Definition 2.19. A spectral triple (A,H,D) is given by a ∗-algebra A represented on a Hilbert space H

π : A → B(H), π is a ∗ −homomorphism

along with a densely defined self-adjoint (typically unbounded) operator

D : dom D ⊂ H → H.

We require that

1) For all a ∈ A, π(a)dom D ⊂ dom D and the densely defined operator [D, π(a)] := Dπ(a)− π(a)D is bounded
(and so extends to a bounded operator on all of H by continuity),

2) For all a ∈ A the operator π(a)(1 +D2)−1/2 is a compact operator.

If in addition there is an operator γ ∈ B(H) with γ = γ∗, γ2 = 1, Dγ+γD = 0, and for all a ∈ A γπ(a) = π(a)γ,
we call the spectral triple even or graded. Otherwise it is odd or ungraded.

14



Remark This seems like an unwieldy definition. There are numerous ingredients, the unbounded operator
makes things technically tricky, and there is a lot to check. This is true. However, the principal gains are that
this is actually the structure one encounters naturally when doing index theory, and it is probably the easiest
framework in which to compute. Hopefully we will see all this as the course progresses.

Remark We will nearly always dispense with the representation π, treating A as a subalgebra of B(H).

CONVENTION: Unless explicitly mentioned otherwise, all spectral triples will be unital, that is
the algebra A is unital; i.e. there is 1 ∈ A such that 1a = a1 = a, 1∗ = 1. This implies in particular
that (1 +D2)−1/2 is a compact operator.

Example 3. The Hodge-de Rham triple (C∞(M), L2(Λ∗, g), d + d∗) of an oriented compact manifold. It is
always even, being graded by the degree of forms modulo 2.

Example 4. Let H = L2(S1), A = C∞(S1) and

D =
1
i

d

dθ

where we are using local coordinates to define D. This is an odd spectral triple, as a little Fourier theory will
reveal. (Exercise)

2.4.1 Index properties of spectral triples

First we show that the ‘D’ of a spectral triple has a well-defined index.

Lemma 2.20. Let (A,H,D) be a spectral triple. Then D is unbounded Fredholm.

Proof. By this we mean that D is a (bounded) Fredholm operator from the Hilbert spaceH1 = {ξ ∈ H : Dξ ∈ H}
with the inner product

〈ξ, η〉1 := 〈ξ, η〉+ 〈Dξ,Dη〉
to the Hilbert space H. To see this, one first checks that D : H1 → H is bounded (Exercise) and then produces
an inverse up to compacts. Such an approximate inverse (parametrix) is given by

D(1 +D2)−1 : H → H1

since
D · D(1 +D2)−1 = 1− (1 +D2)−1.

Exercise: Fill in the details of this proof.

Since D is self-adjoint, it has zero index, but when (A,H,D) is even, or graded, we also have

D+ =
1− γ

2
D1 + γ

2
=
(

1 0
0 0

)(
0 D−
D+ 0

)(
0 0
0 1

)
, D+ : H+

1 → H−.

For an even spectral triple, this is the operator of interest, and it too is Fredholm since D+D−(1 + D2)−1 is
‘almost’ the identity on H−. Since D is unbounded, it is not Fredholm in the strictest sense of the word, and
we need to check that the index is well-defined.
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Definition 2.21. Let (A,H,D) be a spectral triple. For s ≥ 0 define Hs = {ξ ∈ H : (1 +D2)s/2ξ ∈ H}. With
the inner product

〈ξ, η〉s := 〈ξ, η〉+ 〈(1 +D2)s/2ξ, (1 +D2)s/2η〉,

Hs is a Hilbert space. Finally let

H∞ :=
⋂
s≥0

Hs =
⋂
s≥0

dom (1 +D2)s/2.

Corollary 2.22. Let (A,H,D) be an even spectral triple with grading γ. Write D =
(

0 D−
D+ 0

)
, and let

D+
s be the restriction D+ : Hs → Hs−1 where H0 = H. For all s ≥ 1 we have

Index(D+
s ) = Index(D+) = Index(D+(1 +D2)−1/2),

where the middle index is of D+ : H+
1 → H− and the last is the index of D+(1 +D2)−1/2 : H+ → H−.

Proof. Suppose that Dξ = λξ, so that ξ is an eigenvector. Then, since ξ ∈ DomD, we see that ξ ∈ H∞. So all
the eigenvectors of D lie in H∞. In particular, if Dξ = 0, ξ ∈ H∞. Consequently, if D+ξ = 0, ξ ∈ H∞, and
similarly for D−. Hence the kernel and cokernel of D+ consist of elements of H∞, and the index is independent
of which ‘Sobolev space’ we use. The equality with Index(D+(1 + D2)−1/2) now follows from the invertibility
of (1 +D2)−1/2.

Example 5. In finite dimensions, i.e. dimH < ∞, we can take A to be finite dimensional, and so we are
dealing with sums of matrix algebras. There is then really no constraint in the definition of spectral triple. If
we have an even triple (A,H,D, γ) which is finite dimensional in this sense, then

Index(D+ : H+ → H−) = dimH+ − dimH−

by the rank nullity theorem.

The stability properties of the index are ultimately responsible for our ability to construct (co)homology theories
using spectral triples and their relatives. This will be a theme for the rest of these notes.

2.4.2 Connes’ metric for spectral triples

Here we mention one important geometric feature of spectral triples, the metric on the state space of the algebra.
This is of some importance for the construction of spectral triples for particular algebras. The heuristic idea
that the ‘D’ of a spectral triple is some sort of differentiation allows us to use metric ideas to construct ‘D’ so
it is compatible with the notion of difference ratios coming from a given metric. We give examples below.

A state on a unital C∗-algebra is a linear functional φ : A → C with φ(1) = 1 = ‖φ‖ and φ(a∗a) ≥ 0 for all
a ∈ A. This is a convex space, and the extreme points (those states that are not convex combinations of other
states) are called pure states. We denote the state space by S(A) and the pure states by P(A). The pure states
of a commutative C∗-algebra, C(X), correspond to point evaluations. So for x ∈ X defining φx(f) = f(x), for
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all f ∈ C(X) gives a pure state, and they are all of this form. Indeed the weak∗ topology on P(C(X)) is the
original topology on X, and P(C(X)) ' X (Gel’fand-Naimark Theorem).

We now show that spectral triples are ‘noncommutative metric spaces’. We begin with the definition of the
metric.

Lemma 2.23. Suppose that (A,H,D) is a spectral triple and that

{a ∈ A \ 1 : ‖ [D, a] ‖≤ 1} (2.7)

is a norm bounded set in the Banach space A \ C1. Then

d(φ, ψ) = sup
a∈A
{|φ(a)− ψ(a)| : ‖ [D, a] ‖≤ 1}

defines a metric on P(A), the pure state space of A.

Proof. The triangle inequality is a direct consequence of the definition. To see that d(φ, ψ) = 0 implies φ = ψ,
suppose φ 6= ψ. Then there is some a ∈ A with φ(a) 6= ψ(a), and we can use the density of A in A to find an
element of b ∈ A such that φ(b) 6= ψ(b), and so d(φ, ψ) 6= 0. The norm boundedness of the set in (2.7) gives the
finiteness of the distance between any two pure states.

In future, when we mention the metric associated to a spectral triple (A,H,D), we implicitly assume that the
condition (2.7) is met. In particular, it means that no element of A except scalars commutes with D. In fact in
[RV], Lemma 2.23 was improved. The statement is

Proposition 2.24. Let (A,H,D) be a spectral triple such that A is unital, AH is dense in H, and A has
separable norm closure A. Assume that that [D, a] = 0 if and only if a = λ 1 for some λ ∈ C. Then the formula

dD(φ, ψ) := sup{|φ(a)− ψ(a)| : ‖[D, a]‖ ≤ 1}

defines a metric on the state space of A.

The proof depends on showing that the distance between any two points is finite (though the distance need not
be bounded).

The metric is actually defined on the whole state space S(A), but the metric on S(A) need not be determined by
the restriction of the metric to the pure states, even for commutative examples, [Rie3]. Much more information
about ‘compact quantum metric spaces’ is contained in [Rie1, Rie2, Rie3] and references therein. In particular,
Rieffel proves that if the set in Equation 2.7 is in fact pre-compact in A\C1, then the metric induces the weak∗

topology on the state space.

Note that when A is commutative, so that A is an algebra of (at least continuous for the weak∗ topology)
functions on X = P(A), the metric topology on P(A) is automatically finer than the weak∗ topology. In
the case of a smooth Riemannian spin manifold, whose algebra of smooth functions is finitely generated by
the (local) coordinate functions, not only do the topologies on the pure state space agree, so do the metrics,
[C1, C2].
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Lemma 2.25. If (C∞(M), L2(E),D) is the spectral triple of any ‘Dirac type operator’ of the Clifford module
E on a compact Riemannian spin manifold M , then

d(φ, ψ) = dγ(φ, ψ), ∀φ, ψ ∈ P(C(M)),

where dγ is the geodesic distance on X.

More generally, whenever A is commutative, we can take A ⊆ Lipd(P(A)), the Lipschitz functions with respect
to the metric topology, since

|a(φ)− a(ψ)| := |φ(a)− ψ(a)| ≤‖ [D, a] ‖ d(φ, ψ)

for all a ∈ A, φ, ψ ∈ P(A).

Example 6. Here is a simple way to use metric ideas to build a spectral triple. Let A = C⊕C be the continuous
functions on two points. Let A act on the Hilbert space H = C2 by multiplication. Let 0 6= m ∈ R and set

D =
(

0 m
m 0

)
and the grading γ =

(
1 0
0 −1

)
. The index here is zero, but the distance between the two

points is 1
m . Check it yourself (Exercise).

If you want a nonzero index as well, let (a, b) ∈ A act on C3 by

π(a, b)

 ξ1
ξ2
ξ2

 =

 aξ1
bξ2
bξ3


and define D =

(
02 m̄

(m̄)T 0

)
where now m̄ =

(
m
0

)
and γ = 1⊕−12.

Exercise What is the distance now?

You can have lots of fun building more complicated examples with different indices and different numbers of
points and so on. However, as the number of points goes up, the expression for the distance (given a generic
operator D) becomes more and more complicated. It has been shown that for a particular class of examples of
this form, polynomials of degree 5 and more arise, so the distance is generically not computable using arithmetic
and the extraction of roots, [IKM].

Another level of complexity is added when we consider matrix algebras instead of copies of C. This is because
we can have much more complicated commutation relations. We refer to [IKM] for a fuller discussion of these
examples, but recommend playing with some to get the feel for the problems.

These are not just trivial little toy models. Taking the product of the Dirac spectral triple of a manifold with
certain spectral triples for sums of matrix algebras yields spectral triples with close relationships with particle
physics. The reconstruction of the (classical) Lagrangian of the standard model of particle physics from such
a procedure gave the subject an enormous boost. See [GV] for an introduction and a guide to some of the
extensive literature on this subject.

For more information on these finite spectral triples, see [IKM, K, PS].
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There are many other examples of spectral triples built with the intention of recovering or studying metric data
(also dimension type data). Some interesting examples are contained in the recent papers of Erik Christensen
and Cristina Ivan, as well as their coauthors. See [CIL, CI1, CI2, AC]. We present one more example here
which we will look at again when we come to dimensions.

Example 7. This example is cute, and shows the kinds of pathologies which can crop up. Many thanks to
Nigel Higson for relating it to me. Consider the Cantor ‘middle thirds’ set K. So start with the unit interval,
and remove the (open) middle third. Then remove the open middle third of the two remaining subintervals
etc. Observe that points in K come in pairs, e−, e+ where e− is the left endpoint of a gap and e+ is the right
endpoint of a gap. Every point except 0, 1 is one (and only one) of these two types, and we take 0, 1 as a pair.

Let H = l2(end points) and A be the locally constant functions on K. Recall that a function f : K → C
is locally constant if for all x ∈ K there is a neighbourhood U of x such that f is constant on U . Define
D : A ∩H → H by

(Df)(e+) =
−f(e−)
e+ − e−

, (Df)(e−) =
f(e+)
e+ − e−

.

The closure of this densely defined operator is self-adjoint (Exercise). Also

[D, f ]g(e+) =
f(e+)− f(e−)

e+ − e−
g(e−), [D, f ]g(e−) =

f(e+)− f(e−)
e+ − e−

g(e+).

For f locally constant the commutator [D, f ] defines a bounded operator.

Let δe+ be the function which is one on e+ and zero elsewhere, and similarly for δe− . Now these are not locally
constant functions, but are in the domain of (the closure of) D. We observe that span{δe+ , δe−} is invariant
under D since

Dδe+ = δe− , Dδe− = −δe+ .

Indeed in the basis given by δe+ , δe− , D = 1
e+−e−

(
1 0
0 −1

)
. Hence D has eigenvalues ±1/(e+ − e−) = ±3n

if the points appear in the n-th stage of the construction, and their multiplicity is 2n−1. Thus (1 + D2)−1 is
certainly compact and invertible.

It is now an Exercise to show that Connes metric is precisely the usual metric on the Cantor set. We will
return to this example when we discuss summability.
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Chapter 3

More spectral triples from manifolds

Our aim in this Chapter is to produce more examples of spectral triples from manifolds. To do this we will use
a little more differential geometry, as well as the Clifford algebra formalism.

The constructions we use turn out to have a fairly deep interpretation in KK-theory, and yield an intricate
notion of Poincaré Duality in K-theory. This would be the topic of a second (or third...) course.

3.1 The signature operator

In dimensions n = 4k there is another grading on the space Γ(Λ∗T ∗M) that allows us to define a new spectral
triple. In these dimensions, the complex volume form ωC is given by (−1)kω = (−1)ke1 · · · e4k in terms of a
local orthonormal basis. Consequently, the Clifford action by ωC maps the space of real sections of Λ∗M into
itself. Moreover, for ϕ ∈ ΛpM we have

ωC · ϕ = (−1)k+p(p−1)/2 ∗ ϕ,

where ∗ is the Hodge star operator. Since (in even dimensions) d∗ = − ∗ d∗, we see that d + d∗ anticommutes
with the action of ωC, and we get a new grading. We already know that d+ d∗ has compact resolvent, so when
dimM = n = 4k,

(C∞(M), L2(Λ∗M, g), d+ d∗, ωC)

is an even spectral triple.

What is the index? Well, the identification up to sign of ωC· and ∗ gives us isomorphisms

ωC : Hp → H4k−p

for each p = 0, 1, . . . , 2k.

Proof. We know from the Hodge decomposition theorem that ϕ ∈ Hp if and only if dϕ = d∗ϕ = 0. So let
ϕ ∈ Hp. Then dωCϕ = ±ωCd

∗ϕ = 0 and similarly, d∗ωCϕ = ±ωCdϕ = 0. Since ω2
C = 1, we are done.
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So for p = 0, . . . , 2k − 1 the space H(p) = Hp ⊕H4k−p has a decomposition

H(p) = H+(p)⊕H−(p) =
(1 + ωC)

2
H(p)⊕ (1− ωC)

2
H(p).

Observe that the subspaces 1
2 (1± ωC)H(p) have the same dimension.

Proof. If {ϕ1, . . . , ϕm} is a basis of Hp, the subspace H+(p) has basis {ϕ1 + ωCϕ1, . . . , ϕm + ωCϕm}. Likewise
H−(p) has basis {ϕ1 − ωCϕ1, . . . , ϕm − ωCϕm}.

This allows us to compute

kerD± = H± := H±(0)⊕H±(1)⊕ · · · ⊕H±(2k − 1)⊕ (H2k)±,

where (H2k)± = (1± ωC)H2k. Since the index is dim kerD+ − dim kerD−, we have

Index(d+ d∗) = dim(H2k)+ − dim(H2k)−.

Observe that on Λ2kM , ωC and the Hodge star operator coincide. We define a new inner product on H2k by

(φ|ψ)new :=
∫
M

φ ∧ ψ.

Then using ∗ = ωC and
∫
M
φ ∧ ∗φ = ‖φ‖2, we see that the signature of this inner product (the number of

positive eigenvalues minus the number of negative eigenvalues) is precisely the difference in dimensions of the
±1 eigenspaces of the ∗ operator. So letting signature(M) denote the signature of this inner product,

Index((d+ d∗)+, ωC) = signature(M).

Remarkably, this is a homotopy invariant of the manifold.

3.2 Connections and twistings

We can make much of our discussion more streamlined by taking fuller advantage of Clifford algebras.

Recall that if W is a left module over a ∗-algebra A, an hermitian form is a map (·|·) : W ×W → A such that
for all v, w, y ∈W and a ∈ A

(v + w|y) = (v|y) + (w|y), (av|y) = a(v|y), (v|y) = (y|v)∗.

If A is a pre-C∗-algebra, we can also ask for (v|v) ≥ 0 in the sense of the C∗-closure of A, and that (v|v) = 0⇒
v = 0. We assume all our hermitian forms satisfy these properties.

For a vector bundle E → M , we know that Γ(E) is a module over C∞(M) via (fσ)(x) = f(x)σ(x) for all
f ∈ C∞(M), σ ∈ Γ(E) and x ∈ M . An hermitian form is then a collection of positive definite inner products
(·|·)x on Ex such that for all smooth sections σ, ρ ∈ Γ(E), the function x→ (σ(x)|ρ(x))x is smooth. All complex
vector bundles have such a smooth inner product.

21



Now let E →M be a smooth vector bundle, and let ∇ : Γ(E)→ Γ(T ∗M ⊗E) be a connection. So ∇ is C-linear
and for all f ∈ C∞(M) and σ ∈ Γ(E)

∇(fσ) = df ⊗ σ + f∇σ.

We can extend ∇ to a map ∇ : Γ(Λ∗M ⊗ E)→ Γ(Λ∗M ⊗ E) by defining for ω ∈ Γ(ΛkM) and σ ∈ Γ(E)

∇(ω ⊗ σ) = dω ⊗ σ + (−1)kω ⊗∇σ.

One of the most important observations is that ∇2 is linear over C∞(M).

Proof. Let f ∈ C∞(M) and σ ∈ Γ(E). Then

∇2(fσ) = ∇(df ⊗ σ + f∇σ) = d2f ⊗ σ − df ⊗∇σ + df ⊗∇σ + f∇2σ = f∇2σ.

Thus ∇2 is a two-form with values in the endomorphisms of E (locally a matrix of two-forms). It is called the
curvature of E.

A connection ∇ on a vector bundle E → M with hermitian form (·|·) is said to be compatible with (·|·) if for
all σ, ρ ∈ Γ(E)

d(σ|ρ) = (∇σ|ρ) + (σ|∇ρ),

where to interpret the right hand side we write in local coordinates ∇σ =
∑
i dx

i ⊗ σi and ∇ρ =
∑
j dx

j ⊗ ρj
and then

(∇σ|ρ) + (σ|∇ρ) :=
∑
i

dxi(σi|ρ) +
∑
j

dxj(σ|ρj).

Example 8. The Levi-Civita connection on TM or T ∗M is compatible with the Riemannian metric. The
curvature of the Levi-Civita connection is, by definition, the curvature of the manifold.

Lemma 3.1 (see [LM]). Let M be a compact oriented manifold, and let c denote the usual left action of
Cliff(M) on Λ∗M . Let ∇ denote the Levi-Civita connection on T ∗M . then

d+ d∗ = c ◦ ∇.

Thus the Hodge de-Rham and Signature operators are both given by composing the Levi-Civita connection with
the Clifford action. This is a very general recipe, and allows us to construct twisted versions of these operators.

If E,F →M are both vector bundles, with connections ∇E ,∇F respectively, we can define a connection ∇E,F
on the tensor product E ⊗ F by defining for all σ ∈ Γ(E) and ρ ∈ Γ(F )

∇E,F (σ ⊗ ρ) = (∇Eσ)⊗ ρ+ σ ⊗ (∇F ρ).

If E is a Cliff(M) module, then so is E⊗F by letting Cliff(M) act only on E. Thus we can form the operator

c ◦ ∇E,F : Γ(E ⊗ F )→ Γ(E ⊗ F ).

22



Choose an hermitian structure on E so that for any one form ϕ

(c(ϕ)ρ|σ) = −(ρ|c(ϕ̄)σ), ρ, σ ∈ E,

where c denotes the Clifford action. Such an inner product always exists. This ensures that c◦∇E,F is (formally)
self-adjoint.

Applying this recipe to d+ d∗ allows us to ‘twist’ d+ d∗ by any vector bundle

d+ d∗ ⊗∇ IdE := c ◦ ∇T
∗M,E .

By choosing a connection compatible with a product Hermitian structure, and using the integral to define a
scalar inner product, we can construct a new spectral triple

(C∞(M), L2(Λ∗M ⊗ E, g ⊗ (·|·)), d+ d∗ ⊗∇ IdE).

Remark We have made use of the commutativity of the algebra at a few points in the above discussion. For
example, we have identified the right and left actions of functions on sections by multiplication. This allows us
to use Γ(E ⊗ F ) = Γ(E)⊗C∞(M) Γ(F ).

Many of these tricks are unavailable in the noncommutative case. If we have a spectral triple (A⊗Aop,H,D),
where Aop is the opposite algebra, then we can twist by finite projective modules pAN or equivalently pAop,N ,
and be left with a spectral triple for one copy of A. This point of view underlies Poincaré duality in K-theory.

3.3 The spinc condition and the Dirac operator

Building differential operators from connections and Clifford actions yields operators which depend on the
Riemannian metric and the Clifford module. The index of such an operator is an invariant of the manifold and
the Clifford module, [BGV, Thm 3.51]. Since for both the Hodge-de Rham and signature operator the Clifford
module depends only on the manifold, we see that the Euler chacteristic and the signature are invariants of the
manifold.

The question is, what other kinds of operators can one build in this way? For spin and spinc manifolds, there
is an interesting answer.

The spinc condition was originally formulated in differential geometry language, involving double covers of
principal SO bundles on a manifold. This brings in the spin groups and their representations. This will take us
too far afield, so we will take a different approach more suitable for noncommutative geometry.

The definition of spinc has been shown by Plymen, [P], to be equivalent to the following straightforward
characterisation in terms of Clifford algebras.

Definition 3.2 ([P]). Let (M, g) be an oriented Riemannian manifold. Then we say that (M, g) is spinc if
there exists a complex vector bundle S → M such that for all x ∈ M the vector space Sx is an irreducible
representation space for Cliffx(M, g).
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A spinc structure on a Riemannian manifold (M, g) is then the choice of an orientation and irreducible repre-
sentation bundle S of Cliff(M, g). The bundle S is called a (complex) spinor bundle.

When M has at least one spinc structure S, we can build a new operator called the Dirac operator. Choose an
Hermitian form (·|·), let ∇ : Γ(S) → Γ(T ∗M ⊗ S) be any connection compatible with (·|·), and compose the
connection with the Clifford action:

Γ(S) ∇→ Γ(T ∗M ⊗ S) c→ Γ(S).

The resulting operator D = c ◦ ∇ : Γ(S)→ Γ(S) is the Dirac operator on the (complex) spinor bundle S.

Using the more geometric definitions in terms of principal bundles, one can obtain a more canonical Dirac
operator by taking ∇ to be a ‘lift’ of the Levi-Civita connection to S.

By looking at connections on a Cliff(M) module, we see that we have a general construction of a Dirac operator
on any such module. The following Lemma tells us what these modules look like.

Lemma 3.3 (see [BGV]). If M is a spinc manifold, then every Cliff(M) module is of the form S ⊗W where
S is an irreducible Cliff(M) module and W is a complex vector bundle.

Thus on a spinc manifold, we can describe every ‘Dirac type’ operator as a twisted version of the Dirac operator
of an irreducible Clifford module. In fact, using Poincaré duality in K-theory, one can show that up to homotopy
and change of the order of the operator, every elliptic operator on a compact spinc manifold is a twisted Dirac
operator. See [HR, R2].

One very important difference between the Dirac operator of a spinc structure and the Hodge-de Rham operator
must be mentioned. Recall the complex volume form defined in terms of a local orthonormal basis of the
cotangent bundle by ωC = i[(n+1)/2]e1 · e2 · · · · · en. This element of the Clifford algebra is globally parallel,
meaning ∇ωC = 0, where ∇ is the Levi-Civita connection. Since for any differential one form ϕ we have

ϕωC = (−1)n−1ωCϕ

we have the following two situations.

When n is odd, ωC is central with eigenvalues ±1. Since the Clifford algebra is (pointwise) M2(n−1)/2(C) ⊕
M2(n−1)/2(C), we can take ωC = 1⊕−1. An irreducible representation of Cliff(M) then corresponds (pointwise)
to a representation of one of the two matrix subalgebras. Without loss of generality we choose the representation
with ωC = 1. In this case the spectral triple (C∞(M), L2(S),D) is ungraded, or odd.

When n is even, the ±1 eigenspaces of ωC provide a global splitting of S = S+ ⊕ S−. The Clifford action of
a one form maps S+ to S− and vice versa. Hence

ωCD = −DωC.

As the Clifford algebra is (pointwise) a single matrix algebra, we get a representation of the whole Clifford
algebra. The resulting spectral triple (C∞(M), L2(S),D) is graded by the action of ωC, and we get an even
spectral triple.

Thus the Dirac operator of a spinc structure gives an even spectral triple if and only if the
dimension of M is even. The same remains true if we twist the Dirac operator by any vector
bundle.
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One can define a spin structure in terms of representations of real Clifford algebras. This is not quite a
straightforward generalisation, but does go through: see [LM, GVF, P]. Thus one can talk about the Dirac
operator of a spin structure also. In many ways this is easier, and certainly is so from the differential geometry
point of view, see [LM, Appendix D].

3.4 The Atiyah-Singer index theorem

The Hodge-de Rham operator has index equal to the Euler characteristic of the manifold. In dimension 2, the
Gauss-Bonnet Theorem asserts that

χ(M) =
1

2π

∫
M

r dvol,

where r is the scalar curvature of M . This is a remarkable formula, because it allows us to compute a topological
quantity, χ(M), using geometric quantities. More blatantly, it says that by doing explicitly computable calculus
operations, we can compute this topological invariant. The answer does not depend on which coordinates or
metric we choose to compute with.

The Atiyah-Singer Index Theorem generalises this theorem to any elliptic operator. Specifically, it says:

• give me a first order elliptic operator D : Γ(E) → Γ(F ) between sections of (complex) vector bundles
E, F →M ;

• I will give you a sum of even differential forms ω(D) = ω0(D) + · · ·+ ω2[n/2](D) so that

Index(D) =
∫
M

ω2[n/2](D).

In particular, if n is odd the index is zero.

However, more is true. If you take a vector bundle W and twist everything to get D ⊗∇ IdW then

Index(D ⊗∇ IdW ) =
∫
M

ω(D) ∧ Ch(W ).

Here Ch(W ) is the Chern character of W defined by Ch(W ) = Trace(e−∇
2
) where ∇ is any connection on W .

We will give another description of the Chern character of vector bundles later.

Thus the Atiyah-Singer Index Theorem allows you to not only compute the index of D, but all twisted versions
of D also. This means that D is a machine for turning vector bundles into integers via

W 7→ Index(D ⊗∇ IdW ) ∈ Z.

This is actually ‘the same’ in odd dimensions, the difference being that the Chern character of a unitary (see
Appendix B) has only odd degree differential form components. Thus ω(D) ∧ Ch(u) is an odd form, and so
there can be forms of degree dimM to integrate. Also, it is not so straightforward to write down a differential
operator whose index we are computing (it can be done) and we should think of the odd case as computing
Index(PuP ) where P = χ[0,∞)(D) is the positive spectral projection of D.
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Example 9. Hodge-de Rham. Here the sum of differential forms ω is given by (2π)−n/2Pf(−R), where Pf is
short for the Pfaffian of an antisymmetric matrix, and R is the curvature of the Levi-Civita connection. The
Pfaffian satisfies Pf(A)2 = det(A), and changes sign if the orientation changes.

In the case where dimM = 2, Pf(−R) = r, the scalar curvature, and so

Index((d+ d∗)+) = χ(M) =
1

2π

∫
M

rdvol,

and we recover the classical Gauss-Bonnet theorem.

Example 10. For the signature operator,

Index((d+ d∗ ⊗∇ IdE)+) = (πi)−n/2
∫
M

L(M) ∧ Ch(E),

where the L-genus is L = 1 + 1
24Tr(R2) + · · · .

Example 11. For the spin Dirac operator,

Index((D ⊗∇ IdE)+) = (2πi)−n/2
∫
M

Â(M) ∧ Ch(E),

where Â is called the ‘A-roof’ class. So

Index(D+) = (2πi)−n/2
∫
M

Â(M).

Since Â(M) is defined in terms of the curvature, the index is independent of the spin structure. The right hand
side is always a rational number, and if it is not an integer, the manifold has no spin structure.

These examples, and discussion of the Atiyah-Singer index theorem, are presented in [BGV, G, LM].

A natural question is whether the schematic

Index equals integral of differential forms

has any sensible generalisation for noncommutative algebras. In a very real sense, cyclic homology is the
generalisation of de Rham cohomology, and obtaining formulae for the index in terms of cyclic homology and
cohomology is analogous to integrating differential forms to compute the index. We will take this up later.

3.5 The noncommutative torus

One of the nicest and most thoroughly studied spectral triples is defined for the irrational rotation algebra (and
its higher dimensional relatives). The spectral triple defined below satisfies every proposed condition intended
to characterise what we mean by a noncommutative manifold, [C3]. So whenever everyone agrees on what a
noncommutative manifold is, the noncommutative torus will be an example.
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The noncommutative torus is the universal unital C∗-algebra Aθ generated by two unitaries subject to the
commutation relations

UV = e−2πiθV U, θ ∈ [0, 1). (3.1)

For θ = 0 this is clearly the algebra of continuous functions on the torus. For θ rational, we obtain an algebra
Morita equivalent to the functions on the torus. We will be interested in the case where θ is irrational. In this
case, Aθ is simple.

There are two other descriptions of Aθ. The first is as the C∗-algebra associated to the Kronecker foliation of
the (ordinary) torus given by the differential equation

dy = θdx. (3.2)

Spectral triples can be constructed for more general foliations also, see [Ko].

The other description is as a crossed product. For this description we have

Aθ = C(S1)×Rθ Z, (3.3)

where U = z ∈ C(S1) is the generator of functions on the circle, and V implements the rotation by 2πθ:

Rθ(U) = V UV ∗ = e2πiθU. (3.4)

There is to my knowledge no general construction of spectral triples for crossed products Ao Γ given a discrete
group Γ and spectral triple (A,H,D). Some special cases can be found in the literature.

In order to build a spectral triple encoding geometry on the noncommutative torus, we need a smooth algebra,
an unbounded operator and a Hilbert space. We begin with the algebra. Let

Aθ = {
∑
n,m∈Z

cnmU
nV m : |cnm|(|n|+ |m|)q is a bounded double sequence for all q ∈ N}. (3.5)

Fourier theory on the ordinary torus suggests viewing this algebra as the smooth functions on the noncommu-
tative torus. It is not much work to see that Aθ is indeed a Fréchet pre-C∗-algebra (see Section 5.1).

Next we require a Hilbert space. Recall that for θ irrational, Aθ has a unique faithful normalised trace φ given
(on polynomials in the generators) by

φ(a) = φ(
∑

cijU
iV j) = c00. (3.6)

If we set 〈a, b〉 = φ(b∗a), then 〈·, ·〉 is an inner product and this makes Aθ a pre-Hilbert space. Completing with
respect to the topology given by the inner product gives us a Hilbert space called L2(Aθ, φ). The algebra Aθ
acts on L2(Aθ, φ) in the obvious way as multiplication operators. We set

H = L2(Aθ, φ)⊕ L2(Aθ, φ). (3.7)

This doubling up of the Hilbert space is motivated by the dimension of spinor bundles on the ordinary torus, or
equivalently, the dimension of irreducible representations of Cliff(C2). Thus, loosely speaking, we are aiming
to build a Dirac triple rather than a Hodge-de Rham triple.
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In order to specify a Dirac operator for our triple, we need to look at how geometric data are encoded for classical
tori. The problem is that any quadrilateral with opposite sides identified gives rise to a geometric object which
is homeomorphic to the torus. To specify the extra geometric content given by our original quadrilateral, we
embed it in the first quadrant of the complex plane with one vertex at the origin and another at 1 ∈ R (we
could scale the geometry up by putting one corner at r ∈ R, but this is more or less irrelevant). The resulting
geometry is then specified by the ratio of the edge lengths as complex numbers, or with our description, a single
complex number τ which is the coordinate of the other independent vertex. In particular, Im(τ) > 0. The
usual ‘square’ torus corresponds to the choice τ = i.

With this in mind we define two derivations on Aθ by

δ1(U) = 2πiU δ1(V ) = 0 (3.8)

δ2(U) = 0 δ2(V ) = 2πiV. (3.9)

We then find (using UU∗ = 1 etc and the Leibnitz rule) that δ1(U∗) = −2πiU∗, δ2(V ∗) = −2πiV ∗, δ(Un) =
n2πiUn and so on. These rules correspond to the derivatives of exponentials generating the functions on a
torus. Using these derivations and a choice of τ with Im(τ) > 0 we define

D =
(

0 δ1 + τδ2
−δ1 − τ̄ δ2 0

)
. (3.10)

Lastly, we set

γ =
(

1 0
0 −1

)
. (3.11)

Observe that we have the following heuristic. Since(
0 1
−1 0

)(
0 τ
−τ̄ 0

)
+
(

0 τ
−τ̄ 0

)(
0 1
−1 0

)
=
(
−2Re(τ) 0

0 −2Re(τ)

)
,

it looks like we are working with the Clifford algebra of the inner product

g =
(

1 Re(τ)
Re(τ) |τ |2

)
.

Again, if τ = i, we are reduced to the usual Euclidean inner product.

Hard question Can we encode a nonconstant metric using this heuristic?

I claim (Aθ,H,D) defines an even spectral triple with grading γ for each such choice of τ . First we must show
that for all a ∈ Aθ we have [D, a] bounded. So let a =

∑
cnmU

nV m ∈ Aθ. Then

Da− aD =
(

0 δ1 + τδ2
−δ1 − τ̄ δ2 0

)( ∑
cnmU

nV m 0
0

∑
cnmU

nV m

)
−
( ∑

cnmU
nV m 0

0
∑
cnmU

nV m

)(
0 δ1 + τδ2

−δ1 − τ̄ δ2 0

)
=
(

0 2πi
∑
cnmU

nV m(n+mτ)
−2πi

∑
cnmU

nV m(n+mτ̄) 0

)
, (3.12)
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and as |cnm| is ‘Schwartz class’, this converges in norm and so is bounded.

Next we must show that D has compact resolvent. As this is equivalent to D having only eigenvalues of finite
multiplicity (which must go to infinity so that D is unbounded) we will prove this instead. We begin by looking
at D2,

D2 =
(
−δ2

1 − |τ |2δ2
2 − τ̄ δ1δ2 − τδ2δ1 0

0 −δ2
1 − |τ |2δ2

2 − τδ1δ2 − τ̄ δ2δ1

)
. (3.13)

Applying this to the monomial UnV m ⊕ UnV m gives

D2

(
UnV m

UnV m

)
= (2π)2(n2 + |τ |2m2 + nm(τ + τ̄))

(
UnV m

UnV m

)
= (2π)2|n+ τm|2

(
UnV m

UnV m

)
. (3.14)

This shows that all of these monomials are eigenvectors of D2. Note that

φ(V −lU−kUnV m) = φ(V −lUn−kV m)
= φ(e−2πilθ(n−k)Un−kV m−l)
= δn,kδm,l, (3.15)

so that the monomials UnV m form an orthonormal basis of L2(Aθ, φ) (they clearly span). As D2 preserves the
splitting of H, we see that these are all the eigenvalues of D2 and that they give the whole spectrum of D2.
Also note in passing that

kerD2 = spanC{1} ⊕ spanC{1} = C⊕ C. (3.16)

Our results so far are actually enough to conclude, but let us make the eigenvalues and eigenvectors of D explicit.

The eigenvalues of D are given by the square roots of the eigenvalues of D2, and so are

±2π|n+ τm| n,m ∈ Z. (3.17)

The corresponding eigenvectors are

+ve

(
i(n+τm)
|n+τm| U

nV m

UnV m

)
− ve

(
i(n+τm)
|n+τm| U

nV m

−UnV m

)
. (3.18)

The multiplicity of these eigenvalues depends on the value of τ , but is always finite. Thus D has compact
resolvent, and for any choice of τ with Im(τ) > 0 we have an even spectral triple.

Research project Describe the state space of Aθ and Connes’ metric on this state space.

3.6 Isospectral deformations

Using the noncommutative torus we can construct other ‘noncommutative manifolds’. Let (M, g) be a compact
Riemannian manifold with an isometric action of T2 (we can do this with higher dimensional noncommutative
tori also).
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Then we define C∞(Mθ) to be the fixed point for the diagonal action of T2 on C∞(M)⊗Aθ. This is like gluing
in a noncommutative torus in place of each torus orbit in M .

The same kind of procedure allows one to take (C∞(M),H,D) and produce (C∞(Mθ),Hθ,D), where D is
essentially the same operator in both triples, and certainly has the same spectrum. The interested reader can
look at the papers by Connes and Dubois-Violette, [CD].
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Chapter 4

K-theory, K-homology and the index
pairing

4.1 K-theory

This section is the briefest of overviews of K-theory for C∗-algebras. If the discussion here is unfamiliar, try
[WO, RLL, HR]. We will take much of the discussion here from [HR].

4.1.1 K0

Definition 4.1. Given a unital C∗-algebra A, we denote by K0(A) the abelian group with one generator [p] for
each projection p in each matrix algebra Mn(A), n = 1, 2, . . . and the following relations:

a) if p, q ∈Mn(A) and p, q are joined by a norm continuous path of projections in Mn(A) then [p] = [q];

b) [0] = 0 for any square matrix of zeroes;

c) [p] + [q] = [p⊕ q] for any [p], [q].

In a), we say that p and q are homotopic. If p ∈Mn(A) we say that p is a projection over A.

Every element of K0(A) can be written as a formal difference [p]− [q], and two elements [p]− [q] and [p′]− [q′]
are equal if and only if there is a projection r such that

p⊕ q′ ⊕ r is homotpic to p′ ⊕ q ⊕ r.

Exercise Prove this.

The group K0 is a covariant functor from C∗-algebras to abelian groups. If φ : A → B is a ∗-homomorphism,
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then applying φ element by element to the matrix p ∈ Mn(A) gives a projection φ(p) ∈ Mn(B). This yields a
group homomorphism φ∗ : K0(A)→ K0(B).

Exercise Show that two projections in Mn(C) are homotopic if and only if they have the same rank, and that
[p]→ Rank(p) is an isomorphism from K0(C) to Z.

Example 12. (Important) If A = C(X), where X is a compact Hausdorff space, we find that K0(A) = K0(X),
where K0(X) is the topological K-theory defined by vector bundles.

In essence this is because if E → X is a complex vector bundle, there is a projection p ∈ MN (C(X)) for some
N such that Γ(X,E) ∼= pC(X)N as a C(X) module. Similarly, any C(X) module of the form pC(X)N is the
sections of a vector bundle. This is the Serre-Swan Theorem, [S].

The exchange between projections and vector bundles is one of the many important instances of
exchanging topological information for algebraic information, with the Gel’fand-Naimark Theo-
rem (exchanging abelian C∗-algebras and Hausdorff spaces) being one of the main motivations of
noncommutative geometry.

4.1.2 K1

Definition 4.2. Given a unital C∗-algebra A, we denote by K1(A) the abelian group with one generator [u] for
each unitary u in each matrix algebra Mn(A), n = 1, 2, . . . and the following relations:

a) if u, v ∈Mn(A) and u, v are joined by a norm continuous path of unitaries in Mn(A) then [u] = [v];

b) [1] = 0 for any square identity matrix;

c) [u] + [v] = [u⊕ v] for any [u], [v].

Exercise Let ∼ denote the relation of path-connectedness through unitaries. Let u, v ∈ A be unitary. Prove
that in M2(A) we have

u⊕ 1 ∼ 1⊕ u, u⊕ v ∼ uv ⊕ 1 ∼ vu⊕ 1, u⊕ u∗ ∼ 1⊕ 1.

Hint: consider the rotation matrix

Rt =
(

cos(t) sin(t)
− sin(t) cos(t)

)
.

From the exercise we see that [u] + [u∗] = [u⊕ u∗] = [1] = 0, and so −[u] = [u∗].

Exercise Show that K1(C) = 0.

This section on K-theory could be made arbitrarily long, but it is not the main focus of these notes, and so we
leave K-theory for now with the warning that here we have seen the definitions and nothing more.
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4.2 Fredholm modules and K-homology

One of the central reasons that the techniques employed by Atiyah and Singer to compute the index of elliptic
differential operators on manifolds continues to work for noncommutative spaces is the way K-theory enters
the proof. Essentially K-theory, and the dual theory K-homology, make perfectly good sense for C∗-algebras,
commutative or not. The best reference for K-homology is the book [HR], but [A, Ka1] are also worth a read
in this context.

While we were very brief with K-theory, we will spend a little longer on K-homology as it is much closer to
spectral triples. Indeed spectral triples are ‘just’ nice representatives of classes in K-homology.

For example, when we do cohomology on manifolds, we are very happy when we can represent an integral coho-
mology class by a differential form. This allows us to use calculus and geometry to make effective cohomological
calculations. Spectral triples play an almost exactly analogous role.

Definition 4.3. Let A be a separable C∗-algebra. A Fredholm module over A is given by a Hilbert space H, a
∗-representation π : A→ B(H) and an operator F : H → H such that for all a ∈ A

(F 2 − 1)ρ(a), (F − F ∗)ρ(a), [F, ρ(a)] := Fρ(a)− ρ(a)F

are all compact operators. We say that (ρ,H, F ) is even (or graded) if there is an operator γ : H → H such that
γ2 = 1, γ = γ∗, γF + Fγ = 0 and for all a ∈ A, γρ(a) = ρ(a)γ. Otherwise we call (ρ,H, F ) odd.

We will usually consider algebras A which are unital and for which ρ(1A) = IdH, and this simplifies the first
two conditions on F : F 2 − 1 and F − F ∗ are compact. In this case we have the following descriptions.

An odd Fredholm module is given by a (unital) representation ρ on H and an operator F = 2P − 1 +K where
K is compact and P is a projection commuting with ρ(A) modulo compact operators

An even Fredholm module is given by a pair of representations ρ+, ρ− on Hilbert spaces H+,H− respectively,
and

H = H+ ⊕H−, ρ =
(
ρ+ 0
0 ρ−

)
, γ =

(
1 0
0 −1

)
, F =

(
0 F−
F+ 0

)
(4.1)

with F− = (F+)∗+K with K compact. The conditions defining the Fredholm module tell us that F+ : H+ → H−
is a Fredholm operator.

Example 13. Let ρ : C → B(H) be the unique unital representation. Then an ungraded Fredholm module is
given by an essentially self-adjoint Fredholm operator F . Likewise, a graded Fredholm module is given by an
essentially self-adjoint Fredholm operator of the form (4.1).

For an even Fredholm module, we denote by Index(ρ,H, F ) the index of F+ : H1 → H2.

Example 14. Let H = L2(S1) and represent C(S1) on H as multiplication operators. So for f ∈ C(S1) and
ξ ∈ L2(S1), (fξ)(x) = f(x)ξ(x) for x ∈ S1.

Let P ∈ B(H) be the projection onto span{zk : k ≥ 0}. Since P is a projection, the operator F = 2P − 1 is
self-adjoint and has square one. Thus to check that (H, F ) (along with the multiplication representation) is an
odd Fredholm module for C(S1), we just need to check that [F, f ] is compact for all f ∈ C(S1).
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First, every f ∈ C(S1) is a norm (uniform) limit of trigonometric polynomials (Stone-Weierstrass) and so the
norm limit of finite sums of zk, k ∈ Z, where z : S1 → C is the identity function.

Hence it suffices to show that [F, zk] is compact for each k, and so it is enough to show that [P, zk] is compact.
Let ξ ∈ H so ξ =

∑
n∈Z cnz

n (this sum converges in the Hilbert space norm). Then

Pzkξ = P
∑
n∈Z

cnz
n+k =

∑
n≥−k

cnz
n+k

while
zkPξ =

∑
n≥0

cnz
n+k.

The difference is

[P, zk]ξ =

{ ∑0
n=−k cnz

n+k k ≥ 0∑−k
n=0 cnz

n+k k ≤ 0

Hence [P, zk] is a rank k operator, and so compact.

The operators Tf := PfP : PH → PH, f ∈ C(S1), are called Toeplitz or compression operators. One can show
that

T ∗f = Tf̄ and TfTg = Tfg +K

where K is a compact operator. Composing with the quotient map s : B(PH) → Q(PH) we get a ∗-
homomorphism C(S1) → Q(PH) which is faithful!, see [HR] for instance. Hence we get an extension (short
exact sequence)

0→ K(PH)→ T → C(S1)→ 0

where T is the algebra generated by the Tf , f ∈ C(S1). This is called the Toeplitz extension.

Exercise What is the relationship between the Fredholm module for C(S1) in Example 14 and the spectral
triple in Example 4? Hint: Look at the next example.

Example 15. Let H = L2(Λ∗M, g) and let C∞(M) act as multiplication operators. If D = d + d∗, then we
know that (1 +D2)−1/2 is compact, and FD = D(1 +D2)−1/2 is bounded (by the functional calculus). Now we
compute

F 2
D = D2(1 +D2)−1 = 1− (1 +D2)−1

which is the identity modulo compacts. Since FD is self-adjoint and anticommutes with the grading γ of
differential forms by degree, we need only check that [FD, f ] is compact for all f ∈ C∞(M). So

[FD, f ] = [D, f ](1 +D2)−1/2 −D(1 +D2)−1/2[(1 +D2)1/2, f ](1 +D2)−1/2.

Since [D, f ] is Clifford multiplication by df , the first term is compact. Likewise, the second term will be compact
if we can see that [(1 + D2)1/2, f ] is bounded. But the symbol of f is fId, so the order of the commutator is
1 + 0− 1 = 0, and so we have a bounded pseudodifferential operator. Hence we get an even Fredholm module
for the algebra C∞(M).

Definition 4.4. Let (ρ,H, F ) be a Fredholm module, and suppose that U : H′ → H is a unitary. Then
(U∗ρU,H′, U∗FU) is also a Fredholm module (with grading U∗γU if γ is a grading of (ρ,H, F )) and we say that
it is unitarily equivalent to (ρ,H, F ).
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Definition 4.5. Let (ρ,H, Ft) be a family of Fredholm modules parameterised by t ∈ [0, 1] with ρ,H constant.
If the function t → Ft is norm continuous, we call this family an operator homotopy between (ρ,H, F0) and
(ρ,H, F1), and say that these two Fredholm modules are operator homotopic.

If (ρ1,H1, F1) and (ρ2,H2, F2) are Fredholm modules over the same algebra A, then (ρ1⊕ ρ2,H1⊕H2, F1⊕F2)
is a Fredholm module over A, called the direct sum.

Definition 4.6. Let p = 0, 1. The K-homology group Kp(A) is the abelian group with one generator [x] for
each unitary equivalence class of Fredholm modules (even or graded if p = 0, and odd or ungraded for p = 1)
with the following relations:

1) If x0 and x1 are operator homotopic Fredholm modules (both even or both odd) then [x0] = [x1] in Kp(A),
and

2) If x0 and x1 are two Fredholm modules (both even or both odd) then [x0 ⊕ x1] = [x0] + [x1] in Kp(A).

The zero element is the class of the zero module, which is the zero Hilbert space, zero representation and
naturally a zero operator. There are other representatives of this class also which we require in order to be able
to display inverses.

Definition 4.7. A Fredholm module (ρ,H, F ) is called degenerate if F = F ∗, F 2 = 1 and [F, ρ(a)] = 0 for all
a ∈ A.

Exercise The class of a degenerate module is zero in K-homology. Hint: Consider ⊕∞(ρ,H, F ) and (ρ,H, F )⊕
⊕∞(ρ,H, F ).

Lemma 4.8. [HR] If x = (ρ,H, F ) is an odd Fredholm module, then the class of −[x] is represented by the
Fredholm module (ρ,H,−F ). For an even Fredholm module x = (ρ,H, F, γ) the inverse is represented by
(ρ,H,−F,−γ).

Proof. We do the even case, by showing that((
ρ 0
0 ρ

)
,H⊕H,

(
F 0
0 −F

)
,

(
γ 0
0 −γ

))
is operator homotopic to the degenerate module((

ρ 0
0 ρ

)
,H⊕H,

(
0 IdH
IdH 0

)
,

(
γ 0
0 −γ

))
.

We do this by displaying the homotopy

Ft =
(

cos(πt/2)F sin(πt/2)IdH
sin(πt/2)IdH − cos(πt/2)F

)
.

We leave the details as an Exercise.
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Let ψ : A → B be a ∗-homomorphism, and (ρ,H, F ) a Fredholm module over B. Then (ρ ◦ ψ,H, F ) is a
Fredholm module over A. This allows us to define

ψ∗ : K∗(B)→ K∗(A) by ψ∗[(ρ,H, F )] = [(ρ ◦ ψ,H, F )]

and so K-homology is a contravariant functor from (separable) C∗-algebras to abelian groups. We denote by
K∗(A) = K0(A)⊕K1(A).

Being able to work modulo compact operators gives us plenty of freedom. Sometimes however, it is better to
have ‘nice’ representatives of K-homology classes.

Lemma 4.9. [HR] Every K-homology class in K∗(A) can be represented by a Fredholm module (ρ,H, F ) with
F = F ∗ and F 2 = 1. Alternatively, we may suppose that (ρ,H, F ) is nondegenerate in the sense that ρ(A)H
is dense in H. In general we can not do both these things at the same time.

We will call any Fredholm module with F = F ∗ and F 2 = 1 a normalised Fredholm module. In [HR], this
is called an involutive Fredholm module.

Usually, we will omit the representation, and refer to a Fredholm module (H, F ) for a C∗-algebra A.

4.3 The index pairing

The pairing between K-theory and K-homology is given in terms of the Fredholm index. First, we recall a
useful trick. If (H, F ) is a Fredholm module for an algebra A, then (Hk, F ⊗ Idk) is a Fredholm module for
Mk(A). If (H, F ) is normalised so is (Hk, F ⊗ Idk). We leave this as an Exercise.

Let (H, F, γ) be an even Fredholm module for an algebra A and p ∈ Mk(A) a projection. Then the pairing
between [p] ∈ K0(A) and [(H, F, γ)] ∈ K0(A) is given by

Index(p(F+ ⊗ Idk)p : pHk → pHk).

When (H, F ) is an odd Fredholm module over A, and u ∈Mk(A) is a unitary, the pairing between [u] ∈ K1(A)
and [(H, F )] ∈ K1(A) is given by

Index(PkuPk − (1− Pk) : Hk → Hk)

where Pk = 1
2 (1 + F )⊗ Idk.

Exercise Show that these two indices are well defined. That is, show that pF+p and PuP are Fredholm.

When P is a projection (say when F = F ∗ and F 2 = 1), operators like PuP are called Toeplitz operators, and
sometimes one speaks about the compression of u to PH. We won’t discuss it at length, but the index of PuP is
also equal to the net amount of spectrum crossing zero from negative to positive along the path (1− t)P + tPuP
as t goes from 0 to 1. This spectral flow has a rigorous analytic definition due to Phillips, [Ph1, Ph2], which
we won’t pursue here. Other more topological definitions go back to Atiyah and Singer.
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Example 16. Let D+ : Γ(E) → Γ(F ) be a first order elliptic differential operator on the manifold M . Let

(C∞(M), L2(E)⊕ L2(F ),D) be the even spectral triple with D =
(

0 D−
D+ 0

)
where D− = (D+)∗.

If W is another vector bundle, we can associate to it a projection p ∈MN (C∞(M)) so that

L2(E ⊗W ) = pL2(E)N ,

and similarly for F ⊗W . Then D ⊗∇ IdW = p(D ⊗ 1N )p and we see that

Index((D ⊗∇ IdW )+) = Index(p(D+ ⊗ 1N )p).

Exercise Prove the equalities in Example 16. Hint: If Γ(E) = pC∞(M)N then the composition

pC∞(M)N i→ C∞(M)N d→ Γ(T ∗M)N
p→ Γ(E ⊗ T ∗M)

is a connection.

From now on we will assume that any projection or unitary we want to pair a spectral triple (A,H,D) with
lives in the algebra A rather than Mk(A).

4.4 The index pairing for finitely summable Fredholm modules

In this section we briefly describe how we can compute the index pairing for (the class of) certain special
Fredholm modules. Whilst special, these are the kinds of Fredholm modules one often encounters in nature.

Before stating the definition, we need a couple of extras. The first is that we must abandon C∗-algebras. The
problem with C∗-algebras can be seen in the commutative case: if we want to start computing index pDp where
D is a first order elliptic differential operator, we are going to require that p be at least C1. That means we can
not allow ourselves to use any old representative of a K-theory class, but something a bit smoother. We will
return to this point.

The other thing we require is the definition of the Schatten ideals.

Definition 4.10. For any p ≥ 1, define the p-th Schatten ideal of the Hilbert space H to be

Lp(H) = {T ∈ B(H) : Trace(|T |p) <∞}, |T | =
√
T ∗T . (4.2)

Remarks 1) These ideals are all two-sided, but are not norm closed. As the compact operators are the only
norm closed ideal of the bounded operators on Hilbert space, all the Lp have norm closure equal to the compact
operators.

2) The ideal L2(H) is called the Hilbert-Schmidt class, and is a Hilbert space for the inner product

(T, S) = Trace(S∗T ) ∀T, S ∈ L2(H). (4.3)

In particular, it is complete for the norm ‖ T ‖2= Trace(T ∗T )1/2.
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3) More generally, Lp(H) is complete for the norm

‖ T ‖p:= Trace(|T |p)1/p, T ∈ Lp(H). (4.4)

Moreover, if B,C ∈ B(H) and T ∈ Lp(H), then

‖ BTC ‖p≤‖ B ‖‖ T ‖p‖ C ‖, (4.5)

where ‖ · ‖ is the usual operator norm. The fancy language for such an ideal is a ‘symmetrically normed ideal’,
for obvious reasons.

4) Two useful (and immediate) facts are

a) If T ∈ Lp(H) then T p ∈ L1(H).

b) If Ti ∈ Lpi(H) then T1 · · ·Tk ∈ Lp(H) where

1
p

=
k∑
j=1

1
pj
. (4.6)

This last can be shown using the Hölder inequality. Note the analogy with the Lp spaces of classical analysis.

After this very brief summary of these operator ideals, we make the following definition.

Definition 4.11 (Connes). Let A be a unital ∗-algebra. A (normalised) Fredholm module (H, F ) for A is
p+ 1-summable, p ∈ N, if for all a ∈ A we have

[F, a] ∈ Lp+1(H).

Example 17. When we construct the Hodge-de Rham Fredholm module, instead of starting with d + d∗, we
can start with

Dm =
(
d+ d∗ m
m −(d+ d∗)

)
, m > 0,

acting on H2 = L2(Λ∗M, g) ⊕ L2(Λ∗M, g) with the grading γ ⊕ −γ. The representation of C∞(M) on H2 is
as multiplication operators in the first copy, and by zero in the second. Since Dm is invertible, we are free to
define FDm = Dm|Dm|−1. Again we wind up with a Fredholm module, but this time F 2

Dm = IdH2 , and so we
have a normalised Fredholm module.

From Weyl’s Theorem, |Dm|−1 has eigenvalues λ1 ≤ λ2 ≤ · · · satisfying

λn = C n−1/ dimM + o(n−1/ dimM ).

From this and the standard commutator tricks, it is easy to see that (H2, FDm) is dim(M) + 1 summable.

For finitely summable normalised Fredholm modules we can define cyclic cocycles whose class in periodic cyclic
cohomology is called the Chern character. There is some more information about this in Appendix B, but
here is the definition and result which make it worth studying.
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Definition 4.12 (Connes). Let (H, F ) be a p+ 1-summable normalised Fredholm module for the ∗-algebra A.
For any n ≥ p of the same parity as the Fredholm module we define cyclic cocycles by

Chn(H, F )(a0, a1 · · · , an) =
λn
2

Trace(γ[F, a0][F, a1] · · · [F, an]),

where γ is 1 if the module is odd, and the normalisation constants are

λn =
{

(−1)n(n−1)/2Γ(n/2 + 1) (even)√
2i(−1)n(n−1)/2Γ(n/2 + 1) (odd)

The Chern character Ch∗(H, F ) is the class of these cocycles in periodic cyclic cohomology.

For T ∈ B(H) such that FT + TF ∈ L1(H), define the ‘conditional trace’

Trace′(T ) =
1
2

Trace(F (FT + TF )).

Note that if T ∈ L1(H) then Trace′(T ) = Trace(T ). Then define

Traces(T ) = Trace′(γT ).

Here γ = IdH if n is odd. Then we can write

Chn(H, F, γ)(a0, a1, . . . , an) = λn Traces(a0[F, a1] · · · [F, an]). (4.7)

Theorem 4.13 (Connes). Let (H, F ) be a finitely summable normalised Fredholm module over A. Then for
any [e] ∈ K0(A)

〈[e], [(H, F )]〉 = Ch∗(H, F )(e) :=
1

(n/2)!
Chn(H, F )(e, e, . . . , e)

for n large enough and even. For [u] ∈ K1(A)

〈[u], [(H, F )]〉 = Ch∗(H, F )(u) :=
1√

2i2nΓ(n/2 + 1)
Chn(H, F )(u∗, u, . . . , u)

for n large enough and odd.

Proof. We will prove this in the even case using ‘bare hands’. So we can take (H, F, γ) to be given by

F =
(

0 Q
P 0

)
, γ =

(
1 0
0 −1

)
, H = H+ ⊕H−

where H± = 1±γ
2 H, as usual, and we also have PQ = IdH− and QP = IdH+ . We suppose that (H, F, γ) is

p+ 1 summable, and we use the representative of the Chern character with n = 2k, n ≥ p+ 1.

Now we can find a representative e ∈ [e] with e ∈Mm(A) for some m ≥ 1. Using Morita invariance, we see that
with no loss of generality we may take e ∈ A. With these conventions, we wish to compute

Index(ePe) : eH+ → eH−.
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Set Q′ = eQe and P ′ = ePe. Then Q′ is a parametrix for P ′ and

1− P ′Q′ : eH− → eH−

1−Q′P ′ : eH+ → eH+

are both compact, and

e− eFeFe =
(

1−Q′P ′ 0
0 1− P ′Q′

)
=
(
e− eQePe 0

0 e− ePeQe

)
on eH+ ⊕ eH−.

As Q∗ = P ⇒ Q′∗ = P ′, we see that

kerQ′ = cokerP ′ cokerQ′ = kerP ′

which gives
Q′P ′ : (kerP ′)⊥ → (kerP ′)⊥

P ′Q′ : (cokerP ′)⊥ → (cokerP ′)⊥.

This is enough to show that

Index(P ′) = Trace(1−Q′P ′)− Trace(1− P ′Q′)

but we wish to be explicit. Let ψ ∈ (kerP ′)⊥ ⊂ eH+ and compute

eQePeψ = eQePψ

= −[Q, e]ePψ +QePψ

= [Q, e][P, e]ψ + [Q, e]Pψ − [Q, e]Peψ + eψ

= (1 + [Q, e][P, e])ψ. (4.8)

For ψ ∈ kerP ′,
(1−Q′P ′)ψ = ψ (4.9)

and for ψ ∈ cokerP ′,
(1− P ′Q′)ψ = ψ. (4.10)

Thus (
e− eQePe 0

0 e− ePeQe

)
=


[Q, e][P, e] 0 0 0

0 1kerP ′ 0 0
0 0 [P, e][Q, e] 0
0 0 0 1cokerP ′

 . (4.11)

Also, for k ≥ p+1
2 , the operators

([Q, e][P, e])k and ([P, e][Q, e])k (4.12)

are trace class. Moreover

Trace(([P, e][Q, e])k) = Trace([P, e][Q, e] · · · [P, e][Q, e])
= Trace([Q, e][P, e] · · · [Q, e][P, e])
= Trace(([Q, e][P, e])k)
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where we have used the cyclicity of the trace. So

Trace(γ(e− eFeFe)k) = Trace

(
γ

(
e− eQePe 0

0 e− ePeQe

)k)

= Trace




[Q, e][P, e] 0 0 0
0 1kerP ′ 0 0
0 0 −[P, e][Q, e] 0
0 0 0 −1cokerP ′


k

= dim kerP ′ − dim cokerP ′

= IndexP ′

= Index ePe. (4.13)

So for k ≥ p+1
2 we have

Index(ePe) = Trace(γ(e− eFeFe)k).
However,

e− eFeFe = e− e[F, e]Fe− e
= −e[F, e][F, e]e− e[F, e]eF.

Using e = e2, we see that (for any derivation d) de = de2 = e(de) + (de)e. Multiplying on the right and left by
e gives e(de)e = 2e(de)e, whence e(de)e = 0. So

e− eFeFe = −e[F, e]2e.

Thus

Index(ePe) = (−1)k Trace(γ(e[F, e]2e)k)
= (−1)k Trace(γe[F, e]2k)

=
1
k!

(−1)kCh∗(H, F, γ)(e, e, . . . , e),

where in the second last line we used the facts e[F, e]2 = [F, e]2e, eγ = γe and the cyclicity of the trace, while
in the last line we used the fact that Trace′(T ) = Trace(T ) for T ∈ L1(H).

Exercise Do the odd case using ‘bare hands’.

The pairing only depends on the K-theory class of e and the K-homology class of (H, F ). Whilst the Chern
character in this form is very useful for proving basic facts about the index pairing, and relating it to cyclic
cohomology, it is not the most computable form for examples.

Imagine trying to compute the pairing of the Hodge-de Rham Fredholm module with K-theory this way. First
take your Hilbert space realisation of d+ d∗, form an invertible version

Dm =
(
d+ d∗ m
m −(d+ d∗)

)
,

and then take the phase F = Dm|Dm|−1. This would appear to be much harder to compute, and compute with,
than simply differentiating functions. The issue of computability is the most fundamental reason for
being interested in spectral triples.
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Chapter 5

Spectral triples and computing the
index pairing

5.1 Smoothness of spectral triples and algebras

If we want to be able to express the pairing of the K-homology class [(A,H,D)] with K-theory directly in terms
of (A,H,D), we need more assumptions. In particular, to compare our computations with the Chern character
computations, we will need to know that (H,D(1 +D2)−1/2) is a finitely summable Fredholm module.

Smoothness (aka regularity) is about having sufficient ‘quantum differentiability’ for elements of our alge-
bra. However we only have a formula for the pairing for finitely summable Fredholm modules. To en-
sure that a spectral triple represents a K-homology class with a finitely summable representative, we need
a summability assumption on the spectral triple, and some smoothness as well. The interplay between smooth-
ness(=differentiability) and summability(=dimension) is more complicated than in the commutative case.

Definition 5.1. A spectral triple (A,H,D) is QCk for k ≥ 1 (Q for quantum) if for all a ∈ A the operators a
and [D, a] are in the domain of δk, where δ(T ) = [|D|, T ] is the partial derivation on B(H) defined by |D|. We
say that (A,H,D) is QC∞ if it is QCk for all k ≥ 1.

Remark. The notation is meant to be analogous to the classical case, but we introduce the Q so that there is
no confusion between quantum differentiability of a ∈ A and classical differentiability of functions.

Remarks concerning derivations and commutators. By partial derivation we mean that δ is defined
on some subalgebra of B(H) which need not be (weakly) dense in B(H). More precisely, domδ = {T ∈
B(H) : δ(T ) is bounded}. We also note that if T ∈ B(H), one can show that [|D|, T ] is bounded if and only if
[(1+D2)1/2, T ] is bounded, by using the functional calculus to show that |D|−(1+D2)1/2 extends to a bounded
operator in B(H). In fact, writing |D|1 = (1 +D2)1/2 and δ1(T ) = [|D|1, T ] we have

domδn = domδn1 ∀n.
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Thus the condition defining QC∞ can be replaced by

a, [D, a] ∈
⋂
n≥0

domδn1 ∀a ∈ A.

This is important in situations where we cannot assume |D| is invertible.

Proposition 5.2. Let (A,H,D) be a QC1 spectral triple, and define FD = D(1 +D2)−1/2. Then (H, FD) is a
Fredholm module for the C∗-algebra A := A.

Proof. For a ∈ A we have

[FD, a] = [D, a](1 +D2)−1/2 +D[(1 +D2)−1/2, a]
= [D, a](1 +D2)−1/2 −D(1 +D2)−1/2[(1 +D2)1/2, a](1 +D2)−1/2.

This is a compact operator. If {ak}k≥0 ⊂ A is a sequence converging in (operator) norm then

‖[FD, ak − am]‖ ≤ 2‖FD‖ ‖ak − am‖ ≤ 2‖ak − am‖ → 0.

Hence if a = limk ak with ak ∈ A and convergence in norm,

[FD, a] = lim
k

[FD, ak]

and this is a limit of compact operators, and so compact.

Thus every QC1 spectral triple defines a K-homology class. In order that this spectral triple defines a finitely
summable Fredholm module, and so a Chern character, we need finite summability of the spectral triple.

In fact a QC0 spectral triple defines a Fredholm module, but the proof is more involved. See [CP1] for a proof.

We finish this section with a couple of definitions and results about the kinds of algebras which arise in the
company of spectral triples.

Definition 5.3. A Fréchet algebra is a locally convex, metrizable and complete topological vector space with
jointly continuous multiplication.

We will always suppose that we can define the Fréchet topology of A using a countable collection of submulti-
plicative seminorms which includes the C∗-norm of A = A, and note that the multiplication is jointly continuous.
By replacing any seminorm q by 1

2 (q(a) + q(a∗)), we may suppose that q(a) = q(a∗) for all a ∈ A.

Definition 5.4. A subalgebra A of a C∗-algebra A is a pre-C∗-algebra or stable under the holomorphic
functional calculus if whenever a ∈ A is invertible in A, it is invertible in A. Equivalently, A is a pre-C∗-
algebra if whenever f : C→ C is a function holomorphic in a neighbourhood of the spectrum of a ∈ A, then the
element f(a) ∈ A defined by the continuous functional calculus is in fact in A, i.e. f(a) ∈ A.

Definition 5.5. A ∗-algebra A is smooth if it is Fréchet and ∗-isomorphic to a proper dense subalgebra i(A)
of a C∗-algebra A which is stable under the holomorphic functional calculus.
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Thus saying that A is smooth means that A is Fréchet and a pre-C∗-algebra. Asking for i(A) to be a proper
dense subalgebra of A immediately implies that the Fréchet topology of A is finer than the C∗-topology of A
(since Fréchet means locally convex, metrizable and complete.)

It has been shown that if A is smooth in A then Mn(A) is smooth in Mn(A), [GVF, Sc]. This
ensures that the K-theories of the two algebras are isomorphic, the isomorphism being induced by
the inclusion map i. This definition ensures that a smooth algebra is a ‘good’ algebra, [GVF], so
these algebras have a sensible spectral theory which agrees with that defined using the C∗-closure,
and the group of invertibles is open.

Lemma 5.6. [[GVF, R2]] If (A,H,D) is a QC∞ spectral triple, then (Aδ,H,D) is also a QC∞ spectral triple,
where Aδ is the completion of A in the locally convex topology determined by the seminorms

qni(a) =‖ δndi(a) ‖, n ≥ 0, i = 0, 1,

where d(a) = [D, a]. Moreover, Aδ is a smooth algebra.

Thus whenever we have a QC∞ spectral triple (A,H,D), we may suppose without loss of generality that the
algebra A is a Fréchet pre-C∗-algebra. Thus A suffices to capture all the K-theory of A. This is necessary if
we are to use spectral triples to compute the index pairing.

A QC∞ spectral triple (A,H,D) for which A is complete has not only a holomorphic functional calculus for A,
but also a C∞ functional calculus for selfadjoint elements: we quote [R2, Prop. 22].

Proposition 5.7 (C∞ Functional Calculus). Let (A,H,D) be a QC∞ spectral triple, and suppose A is complete.
Let f : R→ C be a C∞ function in a neighbourhood of the spectrum of a = a∗ ∈ A. If we define f(a) ∈ A using
the continuous functional calculus, then in fact f(a) lies in A.

Remark For each a = a∗ ∈ A, the C∞-functional calculus defines a continuous homomorphism Ψ : C∞(U)→
A, where U ⊂ R is any open set containing the spectrum of a, and the topology on C∞(U) is that of uniform
convergence of all derivatives on compact subsets.

The following proposition extends this result to the case of smooth functions of several variables, yielding a
multivariate C∞ functional calculus (proved in [RV]). Before stating it, we recall the continuous functional
calculus for a finite set a1, . . . , an of commuting selfadjoint elements of a unital C∗-algebra A. These generate
a unital ∗-algebra whose closure in A is a C∗-subalgebra C∗(1, a1, . . . , an); let ∆ be its (compact) space of
characters. Evaluation of polynomials p 7→ p(a1, . . . , an) yields a surjective morphism from C

(∏n
j=1 spec(aj)

)
onto C∗(1, a1, . . . , an) ' C(∆) which corresponds, via the Gelfand functor, to a continuous injection ∆ ↪→∏n
j=1 spec(aj); this joint spectrum ∆ may thus be regarded as a compact subset of Rn. If h ∈ C(∆), we may

define h(a1, . . . , an) as the image of h|∆ in C∗(1, a1, . . . , an) under the Gelfand isomorphism.

Proposition 5.8. ([RV]) Let (A,H,D) be a QC∞ spectral triple. Let a1, . . . , an be mutually commuting self-
adjoint elements of A, and let ∆ ⊂ Rn be their joint spectrum. Let f : Rn → C be a C∞ function supported in
a bounded open neighbourhood U of ∆. Then f(a1, . . . , an) lies in Aδ.

Proof. We first define the operator f(a1, . . . , an) lying in A, the C∗-completion of A, using the continuous
functional calculus.
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Since f is a compactly supported smooth function on Rn, we may alternatively define f(a1, . . . , an) ∈ A by a
Fourier integral:

f(a1, . . . , an) = (2π)−n/2
∫

Rn
f̂(s1, . . . , sn) exp(i s · a) dns, (5.1)

where s · a = s1a1 + · · ·+ snan. Since δ (and likewise d := [D, ·]) is a norm-closed derivation from A to B(H),
we may conclude that f(a1, . . . , an) ∈ Domδ with

δ(f(a1, . . . , an)) = (2π)−n/2
∫

Rn
f̂(s1, . . . , sn)δ(exp(i s · a)) dns, (5.2)

provided we can establish dominated convergence for the integral on the right hand side [BR]. Just as in the
one-variable case [R2], since each aj ∈ Domδ, we find that exp(i s · a) =

∏
j exp(isjaj) lies in Domδ also:

δ(exp(isjaj)) = isj

∫ 1

0

exp(itsjaj) δ(aj) exp(i(1− t)sjaj) dt, (5.3)

and in particular,

‖δ(exp(i s · a))‖ ≤ C
∑
j

|sj |, C = max
j

(
‖δ(aj)‖

∏
i 6=j

‖ai‖
)
.

A norm bound which dominates the right hand side of (5.2) is thus given by∫
Rn
|f̂(s1, . . . , sn)| ‖δ(exp(i s · a))‖ dns ≤ C

n∑
j=1

(2π)−n/2
∫

Rn
|f̂(s1, . . . , sn)| |sj | dns.

Let A1 be the completion of A for the norm ‖a‖D := ‖a‖+ ‖da‖; notice that A1 ⊆ A. Replacing δ by d in the
previous argument, we find that

‖f(a1, . . . , an)‖D ≤ ‖f̂‖1 + ‖da‖
n∑
j=1

(2π)−n/2
∫

Rn
|f̂(s1, . . . , sn)| |sj | dns.

Therefore, f(a1, . . . , an) can be approximated, in the ‖ · ‖D norm, by Riemann sums for (5.1) belonging to A,
and thus f(a1, . . . , an) ∈ A1.

Since δ and d are commuting derivations, we obtain that δ(f(a1, . . . , an)) ∈ Domd and d(f(a1, . . . , an)) ∈ Domδ
for a ∈ A, and ‖δ(d(f(a1, . . . , an)))‖ is bounded by a linear combination of expressions ‖δ(daj)‖

∫
|f̂(s1, . . . , sn)| |sj | dns

and ‖δaj‖ ‖dak‖
∫
|f̂(s1, . . . , sn)| |sjsk| dns. In particular, ‖δ(f(a1, . . . , an))‖D also has a bound of this type.

For each m = 1, 2, 3, . . . , let Am be the completion of A for the norm
∑
k≤m ‖δk(a)‖D. Then δ extends to

a norm-closed derivation from Am to B(H), and an ugly but straightforward induction on m shows that each
δk(f(a1, . . . , an)) and δk(d(f(a1, . . . , an))) lies in its domain, using the convergence of

∫
|f̂(s1, . . . , sn)| |p(s1, . . . , sn)| dns

for p a polynomial of degree ≤ m + 1. Thus, f(a1, . . . , an) ∈ Am. Since Aδ =
⋂
m≥1Am, we conclude that

f(a1, . . . , an) ∈ Aδ.

The C∞ functional calculus is useful for constructing specific elements in the algebra.
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5.2 Summability for spectral triples

5.2.1 Finite summability

Just as for Fredholm modules, we require a notion of summability for spectral triples. As for Fredholm modules,
this is needed to write down explicit formulae for index pairings, Chern characters etc etc etc.

Definition 5.9. A spectral triple (A,H,D) is called finitely summable if there is some s0 > 0 such that

Trace((1 +D2)−s0/2) <∞.

This is then true for all s > s0 and we call

p = inf{s ∈ R+ : Trace((1 +D2)−s/2) <∞}

the spectral dimension.

Remark What finitely summable means for a spectral triple with A nonunital and (1 +D2)−1/2 not a compact
operator is still an open question, but see [GGISV, R2, R3].

Not all algebras have finitely summable spectral triples, even when they have finitely summable Fredholm
modules (more on this later). We quote the following necessary condition due to Connes.

Theorem 5.10 (Connes, [C2]). Let A be a unital C∗-algebra and (A,H,D) a finitely summable QC1 spectral
triple, with A ⊂ A dense. Then there exists a positive trace τ on A with τ(1) = 1.

So algebras with no normalised trace, like the Cuntz algebra, do not have finitely summable spectral triples
associated to them.

Proposition 5.11. If (A,H,D) is a finitely summable QC1 spectral triple with spectral dimension p ≥ 0, then
(H, FD) is a [p] + 1-summable Fredholm module for A, where [p] is the largest integer less than or equal to p.

Proof. Let a ∈ A and recall

[FD, a] = [D, a](1 +D2)−1/2 − FD[(1 +D2)1/2, a](1 +D2)−1/2 =: T (1 +D2)−1/2.

Now observe that T is bounded, and we want to show

T (1 +D2)−1/2T (1 +D2)−1/2 · · ·T (1 +D2)−1/2 ∈ L1(H)

where we have a product of [p]+1 terms. For each ε > 0 we have T (1+D2)−1/2 ∈ Lp+ε(H). As [p] ≤ p < [p]+1,
we can choose ε between p and [p] + 1, and so T (1 +D2)−1/2 ∈ L[p]+1(H), the product is in L1(H) and we are
done.

Remark Again using [CP1] we can replace QC1 by QC0.

The finitely summable Fredholm module we wind up with is not normalised in general. To obtain a normalised
finitely summable Fredholm module, we follow the same recipe that we applied to the Hodge-de Rham example.
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Lemma 5.12. Let (A,H,D) be a spectral triple. For any m > 0 we define the double of (A,H,D) to be the
spectral triple (A,H2,Dm) with

H2 = H⊕H, Dm =
(
D m
m −D

)
, a→

(
a 0
0 0

)
.

If (A,H,D) is graded by γ, the double is graded by γ ⊕ −γ. If (A,H,D) is QCk, k = 0, 1, . . . ,∞, so is the
double. If (A,H,D) is finitely summable with spectral dimension p, the double is finitely summable with spectral
dimension p. Moreover, the K-homology classes of (A,H,D) and its double coincide for any m > 0. This class
can be represented by the normalised Fredholm module (H2,Dm|Dm|−1).

Remark Most of this is folklore, and easy to prove. The explicit identification of the K-homology classes and
the normalised representative can be found in [CPRS1].

We also want to know that when we pair with elements of K-theory we wind up with unbounded Fredholm
operators whose index is independent of which ‘Sobolev’ version of the operator we choose to work with.

This does indeed work, as is shown in [H]. This relies on the smoothness of the spectral triple, the ability to
choose smooth representatives of K-theory classes, and the pseudodifferential calculus for spectral triples. The
latter is used to show that the abstract analogue of the elliptic estimates on manifolds are true. See [H] for an
excellent discussion.

5.2.2 (n,∞)-summability and the Dixmier trace

Recall Weyl’s theorem.

Theorem 5.13 (Weyl’s theorem). Let P be an order d elliptic differential operator on a compact oriented
manifold M of dimension n. Let {λk} denote the eigenvalues of P ordered so |λ1| ≤ |λ2| ≤ · · · and repeated
according to multiplicity. Then

|λk| ∼ Ckd/n.

The constant C can also be computed, but we will leave that for a little while. First we will introduce some
analytic machinery.

Let H be a separable Hilbert space. If T ∈ K(H), let µn(T ) denote the n-th singular number of T ; that is
µn(T ) is the n-th eigenvalue of

√
T ∗T when they are listed in nonincreasing order and repeated according to

multiplicity. Let

σN (T ) =
N∑
k=1

µk(T )

be the N -th partial sum of the singular values.

For p > 1 let
L(p,∞)(H) = {T ∈ K(H) : σN (T ) = O(N1−1/p)}

and for p = 1
L(1,∞)(H) = {T ∈ K(H) : σN (T ) = O(logN)}.
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We will be mostly interested in L(1,∞)(H), however the following is useful: If T1, . . . , Tm are in L(p1,∞), . . . ,L(pm,∞)

respectively, and 1/p1 + · · ·+ 1/pm = 1 then T1T2 · · ·Tm ∈ L(1,∞).

While the Schatten classes play a similar role to the Lp spaces of classical analysis, the L(p,∞) spaces play a
role similar to weak Lp spaces.

What we would like to do is construct a functional on L(1,∞)(H) by defining for T ≥ 0

lim
N→∞

1
logN

N∑
k=1

µk(T ).

However this formula need not define a linear functional, and it may not converge. The trick is to consider the
sequence

(
σ2(T )
log 2

,
σ3(T )
log 3

,
σ4(T )
log 4

, ...)

and observe that this sequence is bounded. If it always converged, the limit would provide a linear functional
which is a trace.

Unfortunately it does not always converge, and one must consider certain generalised limits which give a linear
functional. We will denote by limω any such generalised limit, and observe that there are uncountably many
such limits. For a fuller discussion see [CPS2, C1].

For any such choice the following is true.

Proposition 5.14. For T ≥ 0, T ∈ L(1,∞)(H) define

Trω(T ) = lim
ω

1
logN

N∑
k=1

µk(T ).

Then

1) Trω(T1 + T2) = Trω(T1) + Trω(T2), so we can extend it by linearity to all of L(1,∞)(H)

2) If T ≥ 0 then Trω(T ) ≥ 0

3) If S ∈ B(H) and T ∈ L(1,∞)(H) then Trω(ST ) = Trω(TS)

Moreover for any trace class operator T we have Trω(T ) = 0

All this is true for any choice of ω, but in practise the value of the Dixmier trace on interesting operators is
independent of the choice of ω: we call such operators measurable.

Here is a key criteria for measurability. First, for T ∈ L(1,∞)(H), T ≥ 0, define for Re(s) > 1

ζT (s) = Trace(T s) =
∞∑
k=1

µk(T )s.

Then
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Proposition 5.15. With T ≥ 0 as above the following are equivalent:

1) (s− 1)ζT (s)→ L as s↘ 1;

2) 1
logN

∑N
k=1 µk(T )→ L as N →∞.

In this case, the residue at s = 1 of ζT (s) is precisely Trω(T ) and so the Dixmier trace of T is independent of ω.

In fact, one has to work extremely hard to come up with nonmeasurable operators, see [GVF] for an example,
and ‘naturally occurring’ operators are measurable in all known cases. As a typical example, we quote the
following from Connes.

Proposition 5.16. Let M be an n dimensional compact manifold and let T be a classical pseudo-differential
operator of order −n (think of T = (1 + D2)−n/2 where D is order 1) acting on sections of a complex vector
bundle E →M . Then

1) The corresponding operator T on L2(M,E) belongs to the ideal L(1,∞)

2) The Dixmier trace Trω(T ) is independent of ω and is equal to the Wodzicki residue:

WRes(T ) =
1

n(2π)n

∫
S∗M

traceE(σT (x, ξ))dvol.

Here S∗M is the cosphere bundle, {ξ ∈ T ∗M : ‖ξ‖2 = gµνξµξν = 1}.

The amazing thing about the Wodzicki residue is it extends to a trace (the unique such trace) on the whole
algebra of pseudodifferential operators of any order. This extension is simply to take the −n-th part of the
symbol and integrate it over the cosphere bundle.

An important lesson is that the residue of the zeta function can be computed geometrically.

In the following we restrict attention to operators ‘of Dirac type’, by which we mean that the principal symbol
of D is Clifford multiplication. This means that the symbol of D2 is given by σD2(x, ξ) = ‖ξ‖2.

Corollary 5.17. Let f ∈ C∞(M) and D be a first order self-adjoint elliptic operator ‘of Dirac type’ on the
vector bundle E. Then the operator f(1 +D2)−n/2 acting on L2(E) is measurable and

Trω(f(1 +D2)−n/2) =
rank(E)V ol(Sn−1)

n(2π)n

∫
M

fdvol.

Hence the representation of functions as multiplication operators, along with the spectrum of D, is enough to
recover the integral on a manifold using the Dixmier trace. This has stimulated interest in other spectral triples
satisfying the following summability hypothesis.

Definition 5.18. A spectral triple (A,HD) is (n,∞)-summable if

(1 +D2)−n/2 ∈ L(1,∞)(H).
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This definition is definitely in the context of unital algebras A. For an approach to this definition when A is
nonunital see [GGISV, R2, R3].

Observe that if a spectral triple is (n,∞)-summable, then the associated Fredholm module is n+ 1 summable.
Also, the spectral dimension of such a triple is n.

Example 18. Examining the eigenvalues of the ‘Dirac’ operator for the noncommutative torus in Section 3.5
(for simplicity set τ = i), we see that the eigenvalues obey Weyl’s Theorem. This is not surprising since D and
H are actually the same as in the commutative case. Hence the spectral triple for the noncommutative torus is
(2,∞)-summable with spectral dimension p = 2.

Exercise Prove the (2,∞)-summability, and compute the Dixmier trace of (1 +D2)−1. Hint See [GVF].

Example 19. For the Cantor set spectral triple introduced in Example 7 we can also work out what is hap-
penning.

If the gap between e− and e+ appears at the n-th stage of our construction (counting the interval [0, 1] as the
0-th stage), then e+ − e− = 3−n. How many gaps are there with this length? Well, 2n−1 (except n = 0). So
the trace of |D|−s for s >> 1 is

ζ(s) =
∞∑
n=0

2n3−ns =
1

1− 2/3s
.

This is finite for s > log 2
log 3 and this formula provides a meromorphic continuation of ζ(s) whose only singularities

are simple poles at s = (log 2 + 2kπi)/ log 3. The number log 2/ log 3 is the Hausdorff dimension of the Cantor
set.

Exercise What is the reside at s = log 2/ log 3?

The relationship between the Dixmier trace and the zeta function is well described in [CPS2], and the definitive
results are in [CRSS].

5.2.3 θ-summability

Definition 5.19. A spectral triple (A,H,D) is θ-summable if for all t > 0 we have

Trace(e−tD
2
) <∞.

Example 20. Sadly, not all interesting spectral triples are finitely summable, so the local index formula is
not available. The examples arising from supersymmetric quantum field theory are generically not finitely
summable, but rather than take a detour into physics, we will look at examples coming from group C∗-algebras.

All of this material, plus the construction of the metric on the state space first appeared in the beautiful paper
[C2].

Let Γ be a finitely generated group, and let CΓ denote the group ring of Γ. Then the C∗-algebra C∗red(Γ),
called the reduced C∗-algebra of Γ, is the norm closure of the action of CΓ acting on l2(Γ) in the left regular
representation. For ψ ∈ l2(Γ) and g ∈ Γ, the left regular representation is given by

(λ(g)ψ)(k) = ψ(g−1k). (5.4)
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Define a length function on Γ to be a function L : Γ→ R+ such that

1) L(gh) ≤ L(g) + L(h) for all g, h ∈ Γ

2) L(g−1) = L(g) for all g ∈ Γ

3) L(1) = 0

The prototypical example is the word length function. Let G ⊂ Γ be a generating set. Then for all g ∈ Γ,
g = g1 · · · gn for some n where gi ∈ G for all i = 1, ..., n. This expression is not unique, but can be made so
by removing terms like gig−1

i and other terms that cancel owing to the relations amongst group elements. The
resulting expression is called the reduced word of g. If the reduced word of g ∈ Γ is g = g1 · · · gn then the word
length function of g is simply n.

Using length functions we can construct spectral triples.

Lemma 5.20. Let Γ be a discrete group and L a length function on Γ. Let D be the operator of multiplication
by L on H = l2(Γ). If L(g)→∞ as g →∞ then

1) (C(Γ),H,D) is a spectral triple.

2) ‖ [D, λ(g)] ‖= L(g) for all g ∈ Γ.

Proof. To show that for a dense subalgebra A ⊂ C∗(Γ) the commutators [D, a] are bounded, it suffices to show
that for all g ∈ Γ, the commutator [D, λ(g)] is bounded (the group ring CΓ is dense). We compute

(Dλ(g)ψ)(k)− (λ(g)Dψ)(k) = Dψ(g−1k)− λ(g)L(k)ψ(k)
= L(g−1k)ψ(g−1k)− L(k)ψ(g−1k). (5.5)

However
|L(g−1k)− L(k)| ≤ |L(g−1) + L(k)− L(k)| = L(g), (5.6)

so this is bounded.

Now for any real number x ∈ R, let Kx ⊂ Γ be those group elements with L(g) = x. Let ψx be the function in
l2(Γ) with ψx ≡ 1 on Kx and zero elsewhere. Then

Dψx = xψx. (5.7)

As Γ is discrete, L takes on only a discrete number of values. Thus there are a countable number of ψxs and
corresponding eigenvalues x. With the assumption that L(g)→∞ as g →∞, we see that D is unbounded, has
countably many eigenvalues of finite multiplicity, and this is enough to conclude that D has compact resolvent.
This shows that we have a spectral triple. We do not know if it is even or odd.
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Lastly, let ψ1 be the function which is 1 on 1 ∈ Γ and zero elsewhere. Then

([D, λ(g)]ψ1)(k) = (Dλ(g)ψ1)(k)− (λ(g)Dψ1)(k)
= (Dψ1)(g−1k)− (λ(g)L(k)ψ1)(k)
= (L(g−1k)− L(k))ψ1(g−1k)

=
{

0 k 6= g−1

−L(k) k = g−1

= −L(g)δk,g−1 . (5.8)

So as we showed that ‖ [D, λ(g)] ‖≤ L(g), the above calculation shows that equality always holds, proving the
second assertion of the lemma.

So we have a spectral triple, a priori it is odd (ungraded). We are interested in seeing whether it is finitely
summable.

Theorem 5.21 (Connes, [C2]). Let Γ be a discrete group containing the free group on two generators. Let H
be any representation of C∗(Γ), absolutely continuous with respect to the canonical trace on C∗(Γ). Then there
does not exist a self-adjoint operator D on H such that (H,D) is a finitely summable spectral triple for C∗red(Γ).

Remark There may be finitely summable Fredholm modules for such a group algebra. In particular, one is
known for the free group on 2 generators. The culprit here is the lack of hyperfiniteness of the group von
Neumann algebra.

Theorem 5.22 (Connes, [C2]). If Γ is an infinite discrete group with property T , then there exists no finitely
summable spectral triple for C∗red(Γ).

Again, there are interesting finitely summable Fredholm modules for such groups.

Have we run into a fundamental problem in finding geometric representatives for K-homology classes?

Theorem 5.23 (Connes, [C2]). Let Γ be a finitely generated discrete group, and l the word length function, rel-
ative to some generating subset. Let H = l2(Γ), with C∗red(Γ) acting by multiplication and let D be multiplication
by the word length function l. Then (H,D) is a θ-summable spectral triple for C∗red(Γ).

So it would seem that the fundamental problem we ran into is that some group C∗-algebras are ‘infinite
dimensional noncommutative spaces’.

5.3 Analytic formulae for the index

There are analytic formulae which compute the pairing between a spectral triple and K-theory with no reference
to cyclic cohomology. Nevertheless, it is via these formulae that the link to cyclic cohomology is made in
[CPRS2, CPRS3].
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Theorem 5.24 (McKean-Singer Formula). Let D be an unbounded self-adjoint operator with compact resolvent.
Let γ be a self-adjoint unitary which anticommutes with D. Finally, let f be a continuous even function on
R with f(0) 6= 0 and f(D) trace-class. Let D+ = P⊥DP where P = (1 + γ)/2 and P⊥ = 1 − P . Then
D+ : PH → P⊥H is Fredholm and

Index(D+) =
1

f(0)
Trace (γf(D)) . (5.9)

This version (actually a stronger version valid in semfinite von Neumann algebras) can be found in [CPRS3].
The traditional function used in this context is f(x) = e−tx

2
, t > 0, so the formula becomes:

Index(D+) = Trace
(
γe−tD

2
)
.

The operator e−tD
2

is often called a heat kernel, being the solution of the ‘heat equation’ ∂tA(t)+D2A(t) = 0.
However for a finitely summable spectral triple, functions such as (1 + D2)−s/2 for s large provide a natural
alternative.

The McKean-Singer formula goes back to the early seventies (at least) and has been rediscovered and used by
numerous people (I make no attempt at a proper attribution).

On the other hand, an analogous analytic formula for the odd pairing is totally new, [CP1, CP2].

Theorem 5.25 (Carey-Phillips Spectral Flow formula). Let (A,H,D) be a finitely summable spectral triple
with spectral dimension p ≥ 1. Let u ∈ A be unitary and let P be the spectral projection of D corresponding to
the interval [0,∞). Then for any s > p

Index(PuP ) = sf(D, uDu∗) =
1

Cs/2

∫ 1

0

τ(u[D, u∗](1 + (D + tu[D, u∗])2)−s/2)dt, (5.10)

with Cs/2 =
∫∞
−∞(1 + x2)−s/2dx.

Both of the analytic formulae are scale invariant. By this we mean that if we replace D by εD, for ε > 0, in the
right hand side of (5.10) or (5.9), then the left hand side is unchanged, since in both cases the index is invariant
with respect to change of scale.

Rewriting the ‘constant’ Cs/2 as

Cs/2 =
Γ(s− 1/2)Γ(1/2)

Γ(s)

we see that in fact the integral formula in (5.10) can be given a meromorphic continuation (as a function of s)
by setting

Index(PuP )Cs/2 =
∫ 1

0

τ(u[D,u∗](1 + (D + tu[D,u∗])2)−s/2)dt.

Here we have written the right hand side in bold face to indicate that we are thinking of the meromorphically
continued function. Since the residue of Cs/2 at s = 1/2 is 1, we also have

Index(PuP ) = ress=1/2

∫ 1

0

τ(u[D,u∗](1 + (D + tu[D,u∗])2)−s/2)dt.
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This observation is the starting point for the proof of the local index theorem in [CPRS2]. A suitable choice of
functions allows a similar analysis in the even case; we refer to [CPRS3].

The JLO-cocycle can also be derived from an analytic formula. In the even case, the McKean-Singer formula
suffices, while in the odd case one uses the θ-summable spectral flow formula of Carey-Phillips: Let Dt =
D + tu[D, u∗] for u ∈ A unitary, and then

Index(PuP ) =
1√
π

∫ 1

0

Trace(u[D, u∗]e−D
2
t )dt.

The derivation of the JLO-cocycle from the analytic formula is in [CP2].

Apart from group C∗-algebras, the JLO cocycle has been used in supersymmetric quantum field theory and
as a tool for studying the Chern character and its representatives. Indeed, the starting point for Connes and
Moscovici’s original proof of the local index theorem was the JLO cocycle.

5.4 Appendix: Pseudodifferential calculus for spectral triples

This section can be skipped on a first reading, and is really here only if you want some way to prove the elliptic
estimate and Lemma 2.10 for spectral triples. The proofs of the results here can be found in [CPRS2].

In this section we introduce the terminology and basic results of the Connes-Moscovici pseudodifferential calcu-
lus, first introduced in [CM, C4]. This calculus works in great generality, only needing an unbounded self-adjoint
operator D. The proofs of some of these results are quite tricky, and we have omitted them. The original proofs
were simplified by Higson in [H], and these notes are from [CPRS2], where Higson’s ideas were also utilised.

Just as we did in the remarks following Definition 5.1, we set

|D|1 = (1 +D2)1/2, δ1(T ) = [|D|1, T ], T ∈ domδ.

We follow the discussion of the pseudodifferential calculus in [C4], using |D|1 and δ1, instead of |D| and δ. In
order to ensure that the calculus works in this modified setting we flesh out explanations in [C4] and record some
elementary properties which are trivial to prove, but are often used without comment. The most important
results are Proposition 5.30 and its Corollary 5.33.

So let D : domD ⊆ H −→ H be an unbounded self-adjoint operator on the Hilbert space H. For all k ≥ 0, we
set

Hk = dom(1 +D2)k/2 = dom|D|k ⊆ H

and H∞ = ∩k≥0Hk. Recall that the graph norm topology makes Hk into a Hilbert space with norm ‖ · ‖k given
by

‖ ξ ‖2k=‖ ξ ‖2 + ‖ (1 +D2)k/2ξ ‖2

where ‖ · ‖ is the norm on H.

We assume that all of our operators T , in particular D, preserve H∞, so T : H∞ → H∞. In this way, all
computations involving bounded or unbounded operators make sense on the dense subspace H∞.
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Definition 5.26. For r ∈ R, let opr be the linear space of operators mapping H∞ → H∞ which are continuous
in the norms (H∞, ‖ · ‖k)→ (H∞, ‖ · ‖k−r) for all k such that k − r ≥ 0.

Example 21. The operators |D|r and (1 +D2)r/2 are in opr.

Lemma 5.27. [compare Lemma 1.1 of [C4]] Let b ∈ ∩n≥0domδn1 . With σ1(b) = |D|1b|D|−1
1 and ε1(b) =

δ1(b)|D|−1
1 we have

1) σ1 = Id+ ε1,

2) εn1 (b) = δn1 (b)|D|−n1 ∈ N ∀n,

3) σn1 (b) = (Id+ ε1)n(b) =
∑n
k=0

(
n
k

)
δk1 (b)|D|−k1 ∈ N ∀n.

Proof. The first statement is straightforward. The second follows because δ1 is a derivation with δ1(|D|1) = 0.
The third is just the binomial theorem applied to 1).

Similarly, if b ∈ op0, σ−n1 (b) := |D|−n1 b|D|n1 ∈ N for all n and

|D|−n1 b|D|n1 =
n∑
k=0

(
n

k

)
|D|−k1 δk1 (b).

Corollary 5.28. If b ∈ ∩n≥0domδn1 then b ∈ op0.

Observe that by the above Lemma, if b ∈ op0 then b− σ1(b) = −ε1(b) = −δ1(b)|D|−1
1 ∈ op−1. Thus if (A,H,D)

is a QC∞ spectral triple, and b = a or [D, a] for a ∈ A, then (with D playing the role of D) b ∈ op0 and
b− |D|1b|D|−1

1 ∈ op−1.

Example 22. In even the most elementary case A = C∞(S1), H = L2(S1), a = Mz, the operator of multipli-
cation by z, and D = 1

i
d
dθ one can easily see that a ∈ ∩n≥0domδn1 but that [D2, a] is not bounded. In general,

[D2, a] is about the same size as |D|.

Definition 5.29. We define the commuting operators L1, R1 on the space of operators on H∞ by

L1(T ) = (1 +D2)−1/2[D2, T ] = |D|−1
1 [|D|21, T ],

R1(T ) = [D2, T ](1 +D2)−1/2 = [|D|21, T ]|D|−1
1 .

Proposition 5.30. [Compare Lemma 2 [C4]] For all b ∈ op0 the following are equivalent:

1) b ∈
⋂
n≥0 domδn1 ,

2) b ∈
⋂
k,l≥0 domLk1 ◦Rl1.

If T : H∞ → H∞ then it is useful to denote by T (1) := [D2, T ] and T (k) = [D2, [D2, · · · [D2, T ] · · · ]] (k
commutators).
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Definition 5.31. For r ∈ R

OP r = |D|r1

⋂
n≥0

domδn1

 ⊆ opr · op0 ⊆ opr.

If T ∈ OP r we say that the order of T is (at most) r. The definition is actually symmetric, since for r an
integer (at least) we have by Lemma 5.27

OP r = |D|r1
(⋂

domδn1
)

= |D|r1
(⋂

domδn1
)
|D|−r1 |D|r1 ⊆

(⋂
domδn1

)
|D|r1.

From this we easily see that OP r · OP s ⊆ OP r+s. Finally, we note that if b ∈ OP r for r ≥ 0, then since
b = |D|r1a for some a ∈ OP 0, we get [|D|1, b] = |D|r1[|D|1, a] = |D|r1δ1(a), so [|D|1, b] ∈ OP r.

Remarks An operator T ∈ OP r if and only if |D|−r1 T ∈ ∩n≥0domδn1 . Observe that operators of order at most
zero are bounded. If |D|−1

1 is p-summable and T has order −n then, T is p/n-summable.

Important Observations
1) If f is a bounded Borel function then f(D) ∈ B(H) and δ1(f(D)) = 0, implies f(D) ∈ OP 0.
2) If g is an unbounded Borel function such that 1/g is bounded on spec(D) and both g(D)|D|−1

1 and g(D)−1|D|1
are bounded, then for each r, OP r = |g(D)|rOP 0. This follows since OP 0 is an algebra and both |g(D)|r|D|−r1

and g(D)−r|D|r1 are in OP 0. We note that if |D| is not invertible then we get strict containment |D|rOP 0 ⊂
|D|r1OP 0. These observations prove the next Lemma.

Lemma 5.32. If µ ∈ C is in the resolvent set of D2 then

OP r = |(µ−D2)1/2|r
⋂
n≥0

domδn1

 .

Corollary 5.33. Let (A,H,D) be a QC∞ spectral triple, and suppose a ∈ A. Then for n ≥ 0, a(n) and [D, a](n)

are in OPn.

Next we describe the asymptotic expansions introduced by Connes and Moscovici in [C4, CM]. Their principal
result is that if T ∈ OP k for k integral, then for any z ∈ C

(1 +D2)zT = T (1 +D2)z + zT (1)(1 +D2)z−1 +
z(z − 1)

2
T (2)(1 +D2)z−2 + · · ·

· · ·+ z(z − 1) · · · (z − n+ 1)
n!

T (n)(1 +D2)z−n + P,

where P ∈ OP k−(n+1)+2Re(z). This result is proved in both of the papers [C4, CM], but subsequently a simpler
proof has been given by Higson [H].

We briefly sketch the idea behind Higson’s proof. So we suppose that we have a QC∞ spectral triple (A,H,D)
with dimension p ≥ 1. We use D to define the pseudodifferential calculus on H as in the previous section. Let
Q = (1 + s2 +D2) where D is D̃ as defined in Section 5.3 and where s ∈ [0,∞). For Re(z) > p/2 we write Q−z

using Cauchy’s formula

Q−z =
1

2πi

∫
l

λ−z(λ−Q)−1dλ,
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where l is a vertical line λ = a+ iv parametrized by v ∈ R with 0 < a < 1/2 fixed. One checks that the integral
indeed converges in operator norm and by using the spectral theorem for Q (in terms of its spectral resolution)
it converges to Q−z (principal branch). Computing commutators of Q−z with an operator T ∈ OPm then
reduces to an iterative calculation of commutators with (λ−Q)−1. The exact result we need is the following.

Lemma 5.34. Let m,n, k be non-negative integers and T ∈ OPm. Then

(λ−Q)−nT = T (λ−Q)−n + nT (1)(λ−Q)−(n+1) +
n(n+ 1)

2
T (2)(λ−Q)−(n+2) + · · ·

· · · +
(
n+ k − 1

k

)
T (k)(λ−Q)−(n+k) + P (λ)

=
k∑
j=0

(
n+ j − 1

j

)
T (j)(λ−Q)−(n+j) + P (λ)

where the remainder P (λ) has order −(2n+ k −m+ 1) and is given by

P (λ) =
n∑
j=1

(
j + k − 1

k

)
(λ−Q)j−n−1T (k+1)(λ−Q)−j−k.

Corollary. Let n,M be positive integers and A ∈ OP k. Let R = (λ−Q)−1. Then,

RnAR−n =
M∑
j=0

(
n+ j − 1

j

)
A(j)Rj + P

where

P =
n∑
j=1

(
j +M − 1

M

)
Rn+1−jA(M+1)RM+j−n

and P has order k −M − 1.
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Chapter 6

The Chern character of spectral triples

6.1 The local index formula for finitely summable smooth spectral
triples

What is the analogue of the Atiyah-Singer local index theorem in noncommutative geometry? This question
was answered by Connes and Moscovici in the paper [CM]. Improved statements and proofs have been given in
[H, CPRS2, CPRS3].

The (finite) summability conditions give a half-plane where the function

z 7→ τ((1 +D2)−z) (6.1)

is well-defined and holomorphic. In [C4, CM], a stronger condition was imposed in order to prove the local index
formula. This condition not only specifies a half-plane where the function in (6.1) is holomorphic, but also that
this function analytically continues to C minus some discrete set. We clarify this in the following definitions.

Definition 6.1. Let (A,H,D) be a QC∞ spectral triple. The algebra B(A) ⊆ N is the algebra of polynomials
generated by δn(a) and δn([D, a]) for a ∈ A and n ≥ 0. A QC∞ spectral triple (A,H,D) has discrete dimen-
sion spectrum Sd ⊆ C if Sd is a discrete set and for all b ∈ B(A) the function τ(b(1 +D2)−z) is defined and
holomorphic for Re(z) large, and analytically continues to C \ Sd. We say the dimension spectrum is simple
if this zeta function has poles of order at most one for all b ∈ B(A), finite if there is a k ∈ N such that the
function has poles of order at most k for all b ∈ B(A) and infinite, if it is not finite.

Connes and Moscovici impose the discrete dimension spectrum assumption to prove their original version of the
local index formula.

The dimension spectrum idea is quite attractive in a number of respects. The dimension spectrum of a direct
sum of spectral triples is the union of the dimension spectra of the summands. The dimension spectrum of a
product consists of sums of elements in the dimension spectra of the ‘prodands’.

58



New proofs of the local index formula were presented by Nigel Higson, and by Carey, Phillips, Rennie, Sukochev.
These were much simpler, more widely applicable and in the case of [CPRS1, CPRS2], required much less
restriction on the zeta functions, and in particular did not require the discrete dimension spectrum hypothesis.

We will introduce some notation and definitions and then state the local index formula.

Denote multi-indices by (k1, ..., km), ki = 0, 1, 2, ..., whose length m will always be clear from the context and
let |k| = k1 + · · ·+ km. Define

α(k) =
k1!k2! · · · km!

(k1 + 1)(k1 + k2 + 2) · · · (|k|+m)

and the numbers σ̃n,j and σn,j are defined by the equalities

n−1∏
j=0

(z + j + 1/2) =
n∑
j=0

zj σ̃n,j , and
n−1∏
j=0

(z + j) =
n∑
j=1

σn,j .

If (A,H,D) is a QC∞ spectral triple and T ∈ N then T (n) is the nth iterated commutator with D2, that is,
[D2, [D2, [· · · , [D2, T ] · · · ]]].

Definition 6.2. If (A,H,D) is a QC∞ spectral triple, we call

q = inf{k ∈ R : τ((1 +D2)−k/2) <∞}

the spectral dimension of (A,H,D). We say that (A,H,D) has isolated spectral dimension if for b of the form

b = a0[D, a1](k1) · · · [D, am](km)(1 +D2)−m/2−|k|

the zeta functions
ζb(z − (1− q)/2) = Trace(b(1 +D2)−z+(1−q)/2)

have analytic continuations to a deleted neighbourhood of z = (1− q)/2.

Remark Observe that we allow the possibility that the analytic continuations of these zeta functions may have
an essential singularity at z = (1 − q)/2. All that is necessary for us is that the residues at this point exist.
Note that discrete dimension spectrum implies isolated spectral dimension.

Now we define, for (A,H,D) having isolated spectral dimension and

b = a0[D, a1](k1) · · · [D, am](km)(1 +D2)−m/2−|k|

τj(b) = resz=(1−q)/2(z − (1− q)/2)jζb(z − (1− q)/2).

The hypothesis of isolated spectral dimension is clearly necessary here in order to define the residues. Let Q be
the spectral projection of D corresponding to the interval [0,∞)

In [CPRS2] we proved the following result:
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Theorem 6.3 (Odd local index formula). Let (A,H,D) be an odd finitely summable QC∞ spectral triple with
spectral dimension q ≥ 1. Let N = [q/2] + 1 where [·] denotes the integer part, and let u ∈ A be unitary. Then

1) index(QuQ) = 1√
2πi
resr=(1−q)/2

(∑2N−1
m=1,odd φ

r
m(Chm(u))

)
where for a0, ..., am ∈ A, l = {a+ iv : v ∈ R}, 0 < a < 1/2, Rs(λ) = (λ− (1 + s2 +D2))−1 and r > 0 we define
φrm(a0, a1, ..., am) to be

−2
√

2πi
Γ((m+ 1)/2)

∫ ∞
0

sm Trace
(

1
2πi

∫
l

λ−q/2−ra0Rs(λ)[D, a1]Rs(λ) · · · [D, am]Rs(λ)dλ
)
ds.

In particular the sum on the right hand side of 1) analytically continues to a deleted neighbourhood of r = (1−q)/2
with at worst a simple pole at r = (1 − q)/2. Moreover, the complex function-valued cochain (φrm)2N−1

m=1,odd is a
(b, B) cocycle for A modulo functions holomorphic in a half-plane containing r = (1− q)/2.

2) The index is also the residue of a sum of zeta functions:

1√
2πi

resr=(1−q)/2

 2N−1∑
m=1,odd

2N−1−m∑
|k|=0

|k|+(m−1)/2∑
j=0

(−1)|k|+mα(k)Γ((m+ 1)/2)σ̃|k|+(m−1)/2,j

(r − (1− q)/2)j Trace
(
u∗[D, u](k1)[D, u∗](k2) · · · [D, u](km)(1 +D2)−m/2−|k|−r+(1−q)/2

))
.

In particular the sum of zeta functions on the right hand side analytically continues to a deleted neighbourhood
of r = (1− q)/2 and has at worst a simple pole at r = (1− q)/2.

3) If (A,H,D) also has isolated spectral dimension then

index(QuQ) =
1√
2πi

∑
m

φm(Chm(u))

where for a0, ..., am ∈ A

φm(a0, ..., am) = resr=(1−q)/2φ
r
m(a0, ..., am) =

√
2πi

2N−1−m∑
|k|=0

(−1)|k|α(k)×

×
|k|+(m−1)/2∑

j=0

σ̃(|k|+(m−1)/2),jτj

(
a0[D, a1](k1) · · · [D, am](km)(1 +D2)−|k|−m/2

)
,

and (φm)2N−1
m=1,odd is a (b, B) cocycle for A. When [q] = 2n is even, the term with m = 2N − 1 is zero, and for

m = 1, 3, ..., 2N − 3, all the top terms with |k| = 2N − 1−m are zero.

Corollary 6.4. For 1 ≤ p < 2, the statements in 3) of Theorem 6.3 are true without the assumption of isolated
dimension spectrum.

For even spectral triples we have
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Theorem 6.5 (Even local index formula). Let (A,H,D) be an even QC∞ spectral triple with spectral dimension
q ≥ 1. Let N = [ q+1

2 ], where [·] denotes the integer part, and let p ∈ A be a self-adjoint projection. Then

1) Ind(pD+p) = resr=(1−q)/2

(∑2N
m=0,even φ

r
m(Chm(p))

)
where for a0, ..., am ∈ A, l = {a + iv : v ∈ R}, 0 < a < 1/2, Rs(λ) = (λ − (1 + s2 + D2))−1 and r > 1/2 we
define φrm(a0, a1, ..., am) to be

(m/2)!
m!

∫ ∞
0

2m+1smTrace
(
γ

1
2πi

∫
l

λ−q/2−ra0Rs(λ)[D, a1]Rs(λ) · · · [D, am]Rs(λ)dλ
)
ds.

In particular the sum on the right hand side of 1) analytically continues to a deleted neighbourhood of r = (1−q)/2
with at worst a simple pole at r = (1− q)/2. Moreover, the complex function-valued cochain (φrm)2N

m=0,even is a
(b, B) cocycle for A modulo functions holomorphic in a half-plane containing r = (1− q)/2.

2) The index, Ind(pD+p) is also the residue of a sum of zeta functions:

resr=(1−q)/2

(
2N∑

m=0,even

2N−m∑
|k|=0

|k|+m/2∑
j=1

(−1)|k|+m/2α(k)
(m/2)!

2m!
σ|k|+m/2,j×

×(r − (1− q)/2)jTrace
(
γ(2p− 1)[D, p](k1)[D, p](k2) · · · [D, p](km)(1 +D2)−m/2−|k|−r+(1−q)/2

))
,

(for m = 0 we replace (2p−1) by 2p). In particular the sum of zeta functions on the right hand side analytically
continues to a deleted neighbourhood of r = (1− q)/2 and has at worst a simple pole at r = (1− q)/2.

3) If (A,H,D) also has isolated spectral dimension then

Ind(pD+p) =
2N∑

m=0,even

φm(Chm(p))

where for a0, ..., am ∈ A we have φ0(a0) = resr=(1−q)/2φ
r
0(a0) = τ−1(γa0) and for m ≥ 2

φm(a0, ..., am) = resr=(1−q)/2φ
r
m(a0, ..., am) =

2N−m∑
|k|=0

(−1)|k|α(k)×

×
|k|+m/2∑
j=1

σ(|k|+m/2),jτj−1

(
γa0[D, a1](k1) · · · [D, am](km)(1 +D2)−|k|−m/2

)
,

and (φm)2N
m=0,even is a (b, B) cocycle for A. When [q] = 2n + 1 is odd, the term with m = 2N is zero, and for

m = 0, 2, ..., 2N − 2, all the top terms with |k| = 2N −m are zero.

Corollary 6.6. For 1 ≤ q < 2, the statements in 3) of Theorem 6.3 are true without the assumption of isolated
dimension spectrum.

Proposition 6.7 ([CPRS4]). For a QC∞ finitely summable spectral triple with isolated spectral dimension, the
residue cocycle of Theorems 6.3 and 6.5 part 3 represents the class of the Chern character in the (b, B)-bicomplex.
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Computing the cocycle given by the local index formula is often much easier than computing the Fredholm
module version. Understanding all the terms and interpreting what they tell us about the ‘geometry’ of a
spectral triple is a major undertaking, involving the construction of many new examples.

6.2 The JLO cocycle for θ-summable spectral triples

For θ-summable spectral triples Connes introduced entire cyclic cohomology, see Appendix B, and an appropriate
Chern character. A better representative of this Chern character was discovered by Jaffe, Lesniewski and
Osterwalder, the JLO cocycle. It is given on even spectral triples by an infinite sequence of cochains (JLO2k)k≥0

defined by

JLO2k(a0, a1, ..., a2k) =
∫

∆

Trace(γa0e
−t0D2

[D, a1]e−t1D
2
· · · e−t2k−1D2

[D, a2k]e−t2kD
2
)dt0dt1 · · · dt2k.

Here ∆ = {(t0, t1, . . . , t2k) ∈ R2k+1 : tj ≥ 0, t0 + t1 + · · ·+ t2k = 1} is the standard simplex.

In the odd case we have (JLO2k+1)k≥0 defined by

JLO2k+1(a0, a1, ..., a2k+1) =
√

2πi
∫

∆

Trace(a0e
−t0D2

[D, a1]e−t1D
2
· · · e−t2kD

2
[D, a2k]e−t2k+1D2

)dt0dt1 · · · dt2k+1.

In the context of entire cyclic cohomology, the JLO cocycle represents the Chern character. That is if [p] ∈
K0(A) and (A,H,D) is θ-summable, then

〈[p], [(A,H,D)]〉 = 〈[Ch(p)], [JLO(A,H,D)]〉 =
∞∑
k=0

JLO2k(Ch2k(p)).

A similar statement holds in the odd case.

The proof in [CP2] is very similar to that used in proving the local index theorem in [CPRS2, CPRS3]. The
problem with the JLO cocycle is that it is generically not computable. The local index formula is vastly superior
in this regard.

Example 23. Block and Fox showed, [1], starting with the JLO cocycle and using Getzler scaling, that the
Chern character for the Dirac operator on a compact spin manifold M can be represented by

Chk(f0, f1, ..., fk) = c

∫
M

Âf0 df1 ∧ · · · dfk, fj ∈ C∞(M)

yielding the Atiyah-Singer index theorem.

Research exercise Adapt Block annd Fox’s proof to start with the local index formula and obtain the Atiyah-
Singer formula.
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Example 24. The local index cocycle for the noncommutative torus. From known computations of the cyclic
cohomology of the noncommutative torus, the cocycle arising from the local index formula must be a linear
combination of the 0-cocycle τ0 and the 2-cocycle τ2 given by

τ0(a0) = τ(a0), τ2(a0, a1, a2) = τ (a0 (δ1(a1)δ2(a2)− δ2(a1)δ1(a2))) .

Exercise What is the linear combination? Hint: The index pairing with any projection is an integer. Consider
1 ∈ Aθ and the Powers-Rieffel projector pθ. What integers should you get?

The reason so much effort is made to compute the index pairing in cyclic theory is highlighted by the last
exercise. Cyclic cohomology can often be computed using long exact sequences and the relation to Hochschild
cohomology. These tools are not as useful as the six term sequences in K-theory/K-homology, and sadly are
beyond the scope of these notes.
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Chapter 7

Semifinite spectral triples and beyond

7.1 Semifinite spectral triples

We begin with some semifinite versions of standard definitions and results. Let τ be a fixed faithful, normal,
semifinite trace on the von Neumann algebra N . Let KN be the τ -compact operators in N (that is the norm
closed ideal generated by the projections E ∈ N with τ(E) <∞).

Definition 7.1. A semifinite spectral triple (A,H,D) is given by a Hilbert space H, a ∗-algebra A ⊂ N where
N is a semifinite von Neumann algebra acting on H, and a densely defined unbounded self-adjoint operator D
affiliated to N such that

1) [D, a] is densely defined and extends to a bounded operator for all a ∈ A

2) a(λ−D)−1 ∈ KN for all λ 6∈ R and all a ∈ A.

3) The triple is said to be even if there is Γ ∈ N such that Γ∗ = Γ, Γ2 = 1, aΓ = Γa for all a ∈ A and
DΓ + ΓD = 0. Otherwise it is odd.

Along with the notion of τ -compact, we naturally get a notion of τ -Fredholm: T ∈ N is τ -Fredholm if and only
if T is invertible modulo KN . The index of such operators is in general real valued, but we can often constrain
the values...more on this later. Index pairings with K-theory still make sense, and we are still interested in
computing such pairings.

Observe that while we can define a semifinite Fredholm module in a similar way, it is not at all clear at this
point what the relation to K-homology is, if any.

Definition 7.2. A semifinite spectral triple (A,H,D) is QCk for k ≥ 1 (Q for quantum) if for all a ∈ A the
operators a and [D, a] are in the domain of δk, where δ(T ) = [|D|, T ] is the partial derivation on N defined by
|D|. We say that (A,H,D) is QC∞ if it is QCk for all k ≥ 1.

Note. The notation is meant to be analogous to the classical case, but we introduce the Q so that there is no
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confusion between quantum differentiability of a ∈ A and classical differentiability of functions.

Remarks concerning derivations and commutators. By partial derivation we mean that δ is defined
on some subalgebra of N which need not be (weakly) dense in N . More precisely, dom δ = {T ∈ N :
δ(T ) is bounded}. We also note that if T ∈ N , one can show that [|D|, T ] is bounded if and only if [(1+D2)1/2, T ]
is bounded, by using the functional calculus to show that |D| − (1 + D2)1/2 extends to a bounded operator in
N . In fact, writing |D|1 = (1 +D2)1/2 and δ1(T ) = [|D|1, T ] we have

dom δn = dom δn1 for all n.

We also observe that if T ∈ N and [D, T ] is bounded, then [D, T ] ∈ N . Similar comments apply to [|D|, T ],
[(1 +D2)1/2, T ]. The proofs can be found in [CPRS2].

7.1.1 Nonunitality

The examples coming from graph algebras, described soon, are often nonunital. Here is a brief summary of
what we require in this case. See [R2, R3] and [GGISV] for more information.

Whilst smoothness does not depend on whether A is unital or not, many analytical problems arise because of
the lack of a unit. As in [GGISV, R2, R3], we make two definitions to address these issues.

Definition 7.3. An algebra A has local units if for every finite subset of elements {ai}ni=1 ⊂ A, there exists
φ ∈ A such that for each i

φai = aiφ = ai.

Definition 7.4. Let A be a Fréchet algebra and Ac ⊆ A be a dense subalgebra with local units. Then we call A
a quasi-local algebra (when Ac is understood.) If Ac is a dense ideal with local units, we call Ac ⊂ A local.

Separable quasi-local algebras have an approximate unit {φn}n≥1 ⊂ Ac such that for all n, φn+1φn = φn, [R2];
we call this a local approximate unit.

We also require that when we have a spectral triple the operator D is compatible with the quasi-local structure
of the algebra, in the following sense.

Definition 7.5. If (A,H,D) is a spectral triple, then we define Ω∗D(A) to be the algebra generated by A and
[D,A].

Definition 7.6. A local spectral triple (A,H,D) is a spectral triple with A quasi-local such that there exists an
approximate unit {φn} ⊂ Ac for A satisfying

Ω∗D(Ac) =
⋃
n

Ω∗D(A)n, where

Ω∗D(A)n = {ω ∈ Ω∗D(A) : φnω = ωφn = ω}.

Remark A local spectral triple has a local approximate unit {φn}n≥1 ⊂ Ac such that φn+1φn = φnφn+1 = φn
and φn+1[D, φn] = [D, φn]φn+1 = [D, φn], see [R2, R3]. We require this property to prove the summability
results we require.
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7.1.2 Semifinite summability

In the following, let N be a semifinite von Neumann algebra with faithful normal trace τ . Recall from [FK]
that if S ∈ N , the t-th generalized singular value of S for each real t > 0 is given by

µt(S) = inf{||SE|| : E is a projection in N with τ(1− E) ≤ t}.

The ideal L1(N ) consists of those operators T ∈ N such that ‖ T ‖1:= τ(|T |) < ∞ where |T | =
√
T ∗T . In

the Type I setting this is the usual trace class ideal. We will simply write L1 for this ideal in order to simplify
the notation, and denote the norm on L1 by ‖ · ‖1. An alternative definition in terms of singular values is that
T ∈ L1 if ‖T‖1 :=

∫∞
0
µt(T )dt <∞.

Note that in the case where N 6= B(H), L1 is not complete in this norm but it is complete in the norm
||.||1 + ||.||∞. (where ||.||∞ is the uniform norm). Another important ideal for us is the domain of the Dixmier
trace:

L(1,∞)(N ) =
{
T ∈ N : ‖T‖

L(1,∞) := sup
t>0

1
log(1 + t)

∫ t

0

µs(T )ds <∞
}
.

We will suppress the (N ) in our notation for these ideals, as N will always be clear from context. The reader
should note that L(1,∞) is often taken to mean an ideal in the algebra Ñ of τ -measurable operators affiliated
to N , [FK]. Our notation is however consistent with that of [C1] in the special case N = B(H). With this
convention the ideal of τ -compact operators, K(N ), consists of those T ∈ N (as opposed to Ñ ) such that

µ∞(T ) := lim
t→∞

µt(T ) = 0.

Definition 7.7. A semifinite local spectral triple is

• finitely summable if there is some s0 ∈ [0,∞) such that for all s > s0 we have

τ(a(1 +D2)−s/2) <∞ for all a ∈ Ac;

• (p,∞)-summable if
a(D − λ)−1 ∈ L(p,∞) for all a ∈ Ac, λ ∈ C \ R;

• θ-summable if for all t > 0 we have

τ(ae−tD
2
) <∞ for all a ∈ Ac.

Remark If A is unital, and (1 +D2)−1 is τ -compact, kerD is τ -finite dimensional. Note that the summability
requirements are only for a ∈ Ac. We do not assume that elements of the algebra A are all integrable in the
nonunital case.

We need to briefly discuss the Dixmier trace, but fortunately we will usually be applying it in reasonably simple
situations. For more information on semifinite Dixmier traces, see [CPS2]. For T ∈ L(1,∞), T ≥ 0, the function

FT : t→ 1
log(1 + t)

∫ t

0

µs(T )ds
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is bounded. For certain generalised limits, [CPS2], ω ∈ L∞(R+
∗ )∗, we obtain a positive functional on L(1,∞) by

setting
τω(T ) = ω(FT ).

This is the Dixmier trace associated to the semifinite normal trace τ , denoted τω, and we extend it to all of
L(1,∞) by linearity, where of course it is a trace. The Dixmier trace τω is defined on the ideal L(1,∞), and
vanishes on the ideal of trace class operators. Whenever the function FT has a limit at infinity, all Dixmier
traces return the value of the limit. We denote the common value of all Dixmier traces on measurable operators
by −
∫

. So if T ∈ L(1,∞) is measurable, for any allowed functional ω ∈ L∞(R+
∗ )∗ we have

τω(T ) = ω(FT ) = −
∫
T.

Example Let D = 1
i
d
dθ act on L2(S1). Then it is well known that the spectrum of D consists of eigenvalues

{n ∈ Z}, each with multiplicity one. So, using the standard operator trace, the function F(1+D2)−1/2 is

N → 1
log 2N + 1

N∑
n=−N

(1 + n2)−1/2

which is bounded. So (1 +D2)−1/2 ∈ L(1,∞) and for any Dixmier trace Traceω

Traceω((1 +D2)−1/2) = −
∫

(1 +D2)−1/2 = 2.

In [R2, R3] we proved numerous properties of local algebras. The introduction of quasi-local algebras in [GGISV]
led us to review the validity of many of these results for quasi-local algebras. Most of the summability results
of [R2] are valid in the quasi-local setting. In addition, the summability results of [R3] are also valid for general
semifinite spectral triples since they rely only on properties of the ideals L(p,∞), p ≥ 1, [C1, CPS2], and the
trace property. We quote the version of the summability results from [R3] that we require below, stated just
for p = 1. This is a nonunital analogue of a result from [CPS2].

Proposition 7.8 ([R3]). Let (A,H,D) be a QC∞, local (1,∞)-summable semifinite spectral triple relative to
(N , τ). Let T ∈ N satisfy Tφ = φT = T for some φ ∈ Ac. Then

T (1 +D2)−1/2 ∈ L(1,∞).

For Re(s) > 1, T (1 +D2)−s/2 is trace class. If the limit

lim
s→1/2+

(s− 1/2)τ(T (1 +D2)−s) (7.1)

exists, then it is equal to
1
2
−
∫
T (1 +D2)−1/2.

In addition, for any Dixmier trace τω, the function

a 7→ τω(a(1 +D2)−1/2)

defines a trace on Ac ⊂ A.
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The various analytic formulae for computing the index, the local index formula, JLO cocycle,
Chern characters and the results connecting them all continue to hold in the semifinite case,
[CP1, CP2, CPS2, CPRS1, CPRS2, CPRS3, CPRS4]. Just replace the operator trace by a
general semifinite trace. In addition, the local index formula holds for local spectral triples,
semifinite or not, [R3].

7.2 Graph and k-graph algebras

Graph and k-graph algebras are quite a diverse zoo. One can find algebras in these classes (and their relatives
like topological graph algebras, Cuntz-Krieger algebras etc etc) with almost any property you could want. This
makes them a great laboratory.

We will not describe k-graph algebras here, or the associated index theory, since it is broadly similar to what
follows for the graph(= 1-graph) case. See [PRS] for more details. The following account of semifinite spectral
triples for graph algebras comes from [PR].

For a more detailed introduction to graph C∗-algebras we refer the reader to [BPRS, KPR] and the references
therein. A directed graph E = (E0, E1, r, s) consists of countable sets E0 of vertices and E1 of edges, and maps
r, s : E1 → E0 identifying the range and source of each edge. We will always assume that the graph is
row-finite which means that each vertex emits at most finitely many edges. Later we will also assume that
the graph is locally finite which means it is row-finite and each vertex receives at most finitely many edges.
We write En for the set of paths µ = µ1µ2 · · ·µn of length |µ| := n; that is, sequences of edges µi such that
r(µi) = s(µi+1) for 1 ≤ i < n. The maps r, s extend to E∗ :=

⋃
n≥0E

n in an obvious way. A loop in E is a
path L ∈ E∗ with s(L) = r(L), we say that a loop L has an exit if there is v = s(Li) for some i which emits
more than one edge. If V ⊆ E0 then we write V ≥ w if there is a path µ ∈ E∗ with s(µ) ∈ V and r(µ) = w
(we also sometimes say that w is downstream from V ). A sink is a vertex v ∈ E0 with s−1(v) = ∅, a source is
a vertex w ∈ E0 with r−1(w) = ∅.

A Cuntz-Krieger E-family in a C∗-algebra B consists of mutually orthogonal projections {pv : v ∈ E0} and
partial isometries {Se : e ∈ E1} satisfying the Cuntz-Krieger relations

S∗eSe = pr(e) for e ∈ E1 and pv =
∑

{e:s(e)=v}

SeS
∗
e whenever v is not a sink.

It is proved in [KPR, Theorem 1.2] that there is a universal C∗-algebra C∗(E) generated by a non-zero Cuntz-
Krieger E-family {Se, pv}. A product Sµ := Sµ1Sµ2 . . . Sµn is non-zero precisely when µ = µ1µ2 · · ·µn is a path
in En. Since the Cuntz-Krieger relations imply that the projections SeS∗e are also mutually orthogonal, we have
S∗eSf = 0 unless e = f , and words in {Se, S∗f} collapse to products of the form SµS

∗
ν for µ, ν ∈ E∗ satisfying

r(µ) = r(ν) (cf. [KPR, Lemma 1.1]). Indeed, because the family {SµS∗ν} is closed under multiplication and
involution, we have

C∗(E) = span{SµS∗ν : µ, ν ∈ E∗ and r(µ) = r(ν)}. (7.2)

The algebraic relations and the density of span{SµS∗ν} in C∗(E) play a critical role. We adopt the conventions
that vertices are paths of length 0, that Sv := pv for v ∈ E0, and that all paths µ, ν appearing in (7.2) are
non-empty; we recover Sµ, for example, by taking ν = r(µ), so that SµS∗ν = Sµpr(µ) = Sµ.
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If z ∈ S1, then the family {zSe, pv} is another Cuntz-Krieger E-family which generates C∗(E), and the universal
property gives a homomorphism γz : C∗(E) → C∗(E) such that γz(Se) = zSe and γz(pv) = pv. The homo-
morphism γz is an inverse for γz, so γz ∈ AutC∗(E), and a routine ε/3 argument using (7.2) shows that γ is a
strongly continuous action of S1 on C∗(E). It is called the gauge action. Because S1 is compact, averaging over
γ with respect to the normalised Haar measure gives an expectation Φ of C∗(E) onto the fixed-point algebra
C∗(E)γ :

Φ(a) :=
1

2π

∫
S1
γz(a) dθ for a ∈ C∗(E), z = eiθ.

The map Φ is positive, has norm 1, and is faithful in the sense that Φ(a∗a) = 0 implies a = 0.

From Equation (7.2), it is easy to see that a graph C∗-algebra is unital if and only if the underlying graph is
finite. When we consider infinite graphs, we always obtain a quasi-local algebra.

Example For a graph C∗-algebra A = C∗(E), Equation (7.2) shows that

Ac = span{SµS∗ν : µ, ν ∈ E∗ and r(µ) = r(ν)}

is a dense subalgebra. It has local units because

pvSµS
∗
ν =

{
SµS

∗
ν v = s(µ)

0 otherwise .

Similar comments apply to right multiplication by ps(ν). By summing the source and range projections (without
repetitions) of all SµiS

∗
νi appearing in a finite sum

a =
∑
i

cµi,νiSµiS
∗
νi

we obtain a local unit for a ∈ Ac. By repeating this process for any finite collection of such a ∈ Ac we see that
Ac has local units.

7.3 Graph C∗-algebras with semifinite graph traces

This section considers the existence of (unbounded) traces on graph algebras. We denote by A+ the positive
cone in a C∗-algebra A, and we use extended arithmetic on [0,∞] so that 0×∞ = 0. From [PhR] we take the
basic definition:

Definition 7.9. A trace on a C∗-algebra A is a map τ : A+ → [0,∞] satisfying

1) τ(a+ b) = τ(a) + τ(b) for all a, b ∈ A+

2) τ(λa) = λτ(a) for all a ∈ A+ and λ ≥ 0

3) τ(a∗a) = τ(aa∗) for all a ∈ A

We say: that τ is faithful if τ(a∗a) = 0⇒ a = 0; that τ is semifinite if {a ∈ A+ : τ(a) <∞} is norm dense in
A+ (or that τ is densely defined); that τ is lower semicontinuous if whenever a = limn→∞ an in norm in A+

we have τ(a) ≤ lim infn→∞ τ(an).

69



We may extend a (semifinite) trace τ by linearity to a linear functional on (a dense subspace of) A. Observe
that the domain of definition of a densely defined trace is a two-sided ideal Iτ ⊂ A.

Lemma 7.10. Let E be a row-finite directed graph and let τ : C∗(E)→ C be a semifinite trace. Then the dense
subalgebra

Ac := span{SµS∗ν : µ, ν ∈ E∗}

is contained in the domain Iτ of τ .

It is convenient to denote by A = C∗(E) and Ac = span{SµS∗ν : µ, ν ∈ E∗}.

Lemma 7.11. Let E be a row-finite directed graph.

(i) If C∗(E) has a faithful semifinite trace then no loop can have an exit.

(ii) If C∗(E) has a gauge-invariant, semifinite, lower semicontinuous trace τ then τ ◦ Φ = τ and

τ(SµS∗ν) = δµ,ντ(pr(µ)).

In particular, τ is supported on C∗({SµS∗µ : µ ∈ E∗}).

Whilst the condition that no loop has an exit is necessary for the existence of a faithful semifinite trace, it is
not sufficient.

One of the advantages of graph C∗-algebras is the ability to use both graphical and analytical techniques. There
is an analogue of the above discussion of traces in terms of the graph.

Definition 7.12 (cf. [T]). If E is a row-finite directed graph, then a graph trace on E is a function g : E0 → R+

such that for any v ∈ E0 we have
g(v) =

∑
s(e)=v

g(r(e)). (7.3)

If g(v) 6= 0 for all v ∈ E0 we say that g is faithful.

Remark One can show by induction that if g is a graph trace on a directed graph with no sinks, and n ≥ 1

g(v) =
∑

s(µ)=v, |µ|=n

g(r(µ)). (7.4)

For graphs with sinks, we must also count paths of length at most n which end on sinks. To deal with this more
general case we write

g(v) =
∑

s(µ)=v, |µ|�n

g(r(µ)) ≥
∑

s(µ)=v, |µ|=n

g(r(µ)), (7.5)

where |µ| � n means that µ is of length n or is of length less than n and terminates on a sink.

As with traces on C∗(E), it is easy to see that a necessary condition for E to have a faithful graph trace is that
no loop has an exit.
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Proposition 7.13. Let E be a row-finite directed graph. Then there is a one-to-one correspondence between
faithful graph traces on E and faithful, semifinite, lower semicontinuous, gauge invariant traces on C∗(E).

There are several steps in the construction of a spectral triple. We begin in Subsection 7.3.1 by constructing a
C∗-module. We define an unbounded operator D on this C∗-module as the generator of the gauge action of S1

on the graph algebra. We show in Subsection 7.3.2 that D is a regular self-adjoint operator on the C∗-module.
We use the phase of D to construct a Kasparov module.

7.3.1 Building a C∗-module

If you are not familiar with C∗-modules, just think of a Hilbert space, except the inner product takes values
in a C∗-algebra, which acts on the right of the module. The examples below are straightforward, and more
information can be found in [La, RW].

The important things to know concern operators on these modules which commute with the right action of the
C∗-algebra.

Not all F -linear maps X → X possess adjoints for the inner product. The collection of adjointable endomor-
phisms (those with an adjoint) is denoted EndF (X). The adjointable endomorphisms form a C∗-algebra with
respect to the adjoint operation and operator norm.

Amongst these endomorphisms are the rank one endomorphisms Θx,y, x, y ∈ X, defined on z ∈ X by

Θx,yz := x(y|z)R.

Exercise What is the adjoint of Θx,y?

Finite sums of rank one endomorphisms are called finite rank. The finite rank endomorphisms generate a closed
ideal in EndF (X). This ideal is called the ideal of compact endomorphisms and is denoted End0

F (X).

Two important things should be noted:

We have a notion of compact, so we have a notion of Fredholm (invertible modulo compacts),
and so we have a notion of index. In this case the index is a difference of two F -modules, and
this difference defines an element of K0(F ). See [GVF] for a thorough discussion.

This notion of compactness need have nothing whatsoever to do with the compactness of oper-
ators on Hilbert space or even the notion of compactness in semifinite von Neumann algebras.
Completely different!!!

The actual C∗-modules we will look at in these notes are fairly simple, so you will not have many problems.

The constructions of this subsection work for any locally finite graph. Let A = C∗(E) where E is any locally
finite directed graph. Let F = C∗(E)γ be the fixed point subalgebra for the gauge action. Finally, let Ac, Fc be
the dense subalgebras of A,F given by the (finite) linear span of the generators.

We make A a right inner product F -module. The right action of F on A is by right multiplication. The inner
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product is defined by
(x|y)R := Φ(x∗y) ∈ F.

Here Φ is the canonical expectation. It is simple to check the requirements that (·|·)R defines an F -valued inner
product on A. The requirement (x|x)R = 0⇒ x = 0 follows from the faithfulness of Φ.

Definition 7.14. Define X to be the C∗-F -module completion of A for the C∗-module norm

‖x‖2X := ‖(x|x)R‖A = ‖(x|x)R‖F = ‖Φ(x∗x)‖F .

Define Xc to be the pre-C∗-Fc-module with linear space Ac and the inner product (·|·)R.

Remark Typically, the action of F does not map Xc to itself, so we may only consider Xc as an Fc module.
This is a reflection of the fact that Fc and Ac are quasilocal not local.

The inclusion map ι : A→ X is continuous since

‖a‖2X = ‖Φ(a∗a)‖F ≤ ‖a∗a‖A = ‖a‖2A.

We can also define the gauge action γ on A ⊂ X, and as

‖γz(a)‖2X = ‖Φ((γz(a))∗(γz(a)))‖F = ‖Φ(γz(a∗)γz(a))‖F
= ‖Φ(γz(a∗a))‖F = ‖Φ(a∗a)‖F = ‖a‖2X ,

for each z ∈ S1, the action of γz is isometric on A ⊂ X and so extends to a unitary Uz on X. This unitary is
F linear, adjointable, and we obtain a strongly continuous action of S1 on X, which we still denote by γ.

For each k ∈ Z, the projection onto the k-th spectral subspace for the gauge action defines an operator Φk on
X by

Φk(x) =
1

2π

∫
S1
z−kγz(x)dθ, z = eiθ, x ∈ X.

Observe that on generators we have Φk(SαS∗β) = SαS
∗
β when |α| − |β| = k and is zero when |α| − |β| 6= k. The

range of Φk is
Range Φk = {x ∈ X : γz(x) = zkx for all z ∈ S1}. (7.6)

These ranges give us a natural Z-grading of X.

Remark If E is a finite graph with no loops, then for k sufficiently large there are no paths of length k and so
Φk = 0. This will obviously simplify many of the convergence issues below.

Lemma 7.15. The operators Φk are adjointable endomorphisms of the F -module X such that Φ∗k = Φk = Φ2
k

and ΦkΦl = δk,lΦk. If K ⊂ Z then the sum
∑
k∈K Φk converges strictly to a projection in the endomorphism

algebra. The sum
∑
k∈Z Φk converges to the identity operator on X.

Corollary 7.16. Let x ∈ X. Then with xk = Φkx the sum
∑
k∈Z xk converges in X to x.
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7.3.2 The Kasparov module

In this subsection we assume that E is locally finite and furthermore has no sources. That is,
every vertex receives at least one edge.

Since we have the gauge action defined on X, we may use the generator of this action to define an unbounded
operator D. We will not define or study D from the generator point of view, rather taking a more bare-hands
approach. It is easy to check that D as defined below is the generator of the S1 action.

The theory of unbounded operators on C∗-modules that we require is all contained in Lance’s book, [La,
Chapters 9,10]. We quote the following definitions (adapted to our situation).

Definition 7.17. Let Y be a right C∗-B-module. A densely defined unbounded operator D : dom D ⊂ Y → Y
is a B-linear operator defined on a dense B-submodule dom D ⊂ Y . The operator D is closed if the graph

G(D) = {(x|Dx)R : x ∈ dom D}

is a closed submodule of Y ⊕ Y .

If D : dom D ⊂ Y → Y is densely defined and unbounded, define a submodule

dom D∗ := {y ∈ Y : ∃z ∈ Y such that ∀x ∈ dom D, (Dx|y)R = (x|z)R}.

Then for y ∈ dom D∗ define D∗y = z. Given y ∈ dom D∗, the element z is unique, so D∗ : domD∗ → Y ,
D∗y = z is well-defined, and moreover is closed.

Definition 7.18. Let Y be a right C∗-B-module. A densely defined unbounded operator D : dom D ⊂ Y → Y
is symmetric if for all x, y ∈ dom D

(Dx|y)R = (x|Dy)R.

A symmetric operator D is self-adjoint if dom D = dom D∗ (and so D is necessarily closed). A densely defined
unbounded operator D is regular if D is closed, D∗ is densely defined, and (1 +D∗D) has dense range.

The extra requirement of regularity is necessary in the C∗-module context for the continuous functional calculus,
and is not automatic, [La, Chapter 9].

With these definitions in hand, we return to our C∗-module X.

Proposition 7.19. Let X be the right C∗-F -module of Definition 7.14. Define XD ⊂ X to be the linear space

XD = {x =
∑
k∈Z

xk ∈ X : ‖
∑
k∈Z

k2(xk|xk)R‖ <∞}.

For x =
∑
k∈Z xk ∈ XD define

Dx =
∑
k∈Z

kxk.

Then D : XD → X is a self-adjoint regular operator on X.
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Remark Any SαS∗β ∈ Ac is in XD and

DSαS∗β = (|α| − |β|)SαS∗β .

There is a continuous functional calculus for self-adjoint regular operators, [La, Theorem 10.9], and we use this
to obtain spectral projections for D at the C∗-module level. Let fk ∈ Cc(R) be 1 in a small neighbourhood of
k ∈ Z and zero on (−∞, k − 1/2] ∪ [k + 1/2,∞). Then it is clear that

Φk = fk(D).

That is the spectral projections of D are the same as the projections onto the spectral subspaces of the gauge
action.

The next Lemma is the first place where we need our graph to be locally finite and have no sources.

Lemma 7.20. Assume that the directed graph E is locally finite and has no sources. For all a ∈ A and k ∈ Z,
aΦk ∈ End0

F (X), the compact endomorphisms of the right F -module X. If a ∈ Ac then aΦk is finite rank.

Remark The proof actually shows that for k ≥ 0

Φk =
∑
|ρ|=k

ΘR
Sρ,Sρ

where the sum converges in the strict topology. A similar formula holds for k < 0.

Lemma 7.21. Let E be a locally finite directed graph with no sources. For all a ∈ A, a(1+D2)−1/2 is a compact
endomorphism of the F -module X.

Proof. First let a = pv for v ∈ E0. Then the sum

Rv,N := pv

N∑
k=−N

Φk(1 + k2)−1/2

is finite rank, by Lemma 7.20. We will show that the sequence {Rv,N}N≥0 is convergent with respect to the
operator norm ‖ · ‖End of endomorphisms of X. Indeed, assuming that M > N ,

‖Rv,N −Rv,M‖End = ‖pv
−N∑

k=−M

Φk(1 + k2)−1/2 + pv

M∑
k=N

Φk(1 + k2)−1/2‖End

≤ 2(1 +N2)−1/2 → 0, (7.7)

since the ranges of the pvΦk are orthogonal for different k. Thus, using the argument from Lemma 7.20,
a(1 +D2)−1/2 ∈ End0

F (X). Letting {ai} be a Cauchy sequence from Ac, we have

‖ai(1 +D2)−1/2 − aj(1 +D2)−1/2‖End ≤ ‖ai − aj‖End = ‖ai − aj‖A → 0,

since ‖(1 +D2)−1/2‖ ≤ 1. Thus the sequence ai(1 +D2)−1/2 is Cauchy in norm and we see that a(1 +D2)−1/2

is compact for all a ∈ A.
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It turns out that the previous lemmas have proved that we have a Kasparov module. This is like a fancy version
of a Fredholm module, but now instead of a Hilbert space, we have a C∗-module. Just like Fredholm modules
and spectral triples, they come in two flavours, even and odd.

Definition 7.22. An odd Kasparov A-B-module consists of a countably generated ungraded right B-C∗-
module E, with φ : A→ EndB(E) a ∗-homomorphism, together with P ∈ EndB(E) such that a(P−P ∗), a(P 2−
P ), [P, a] are all compact endomorphisms. Alternatively, for V = 2P − 1, a(V − V ∗), a(V 2 − 1), [V, a] are all
compact endomorphisms for all a ∈ A. One can modify P to P̃ so that P̃ is self-adjoint; ‖ P̃ ‖≤ 1; a(P − P̃ )
is compact for all a ∈ A and the other conditions for P hold with P̃ in place of P without changing the module
E. If P has a spectral gap about 0 (as happens in the cases of interest here) then we may and do assume that
P̃ is in fact a projection without changing the module, E.

An even Kasparov A-B-module has, in addition to the above data, a grading by a self-adjoint endomorphism
Γ with Γ2 = 1 and φ(a)Γ = Γφ(a), V Γ + ΓV = 0.

Just as suitable equivalence relations turned Fredholm modules into a cohomology theory for C∗-algebras, so
too there are relations which turn Kasparov A-B-modules into a bivariant theory, KK∗(A,B). This works so
that

KKj(A,C) = Kj(A), K-homology, KKj(C, A) = Kj(A), K-theory.

By [K], [Lemma 2, Section 7], the pair (φ, P ) determines a KK1(A,B) class, and every class has such a repre-
sentative. The equivalence relation on pairs (φ, P ) that give KK1 classes is generated by unitary equivalence
(φ, P ) ∼ (UφU∗, UPU∗) and homology: (φ1, P1) ∼ (φ2, P2) if P1φ1(a) − P2φ2(a) is a compact endomorphism
for all a ∈ A, see also [K, Section 7].

Just like Fredholm modules, Kasparov modules have an unbounded version as well.

Definition 7.23. An odd unbounded Kasparov A-B-module consists of a countably generated ungraded
right B-C∗-module E, with φ : A → EndB(E) a ∗-homomorphism, together with an unbounded self-adjoint
regular operator D : domD ⊂ E → E such that [D, a] is bounded for all a in a dense ∗-subalgebra of A and
a(1 +D2)−1/2 is a compact endomorphism of E for all a ∈ A. An even unbounded Kasparov A-B-module
has, in addition to the previous data, a Z2-grading with A even and D odd, as in Definition 7.22.

So, now we can state a theorem about graph algebras.

Proposition 7.24. Assume that the directed graph E is locally finite and has no sources. Let V = D(1+D2)−1/2.
Then (X,V ) defines an odd Kasparov module, and so a class in KK1(A,F ).

Proof. We will use the approach of [K, Section 4]. We need to show that various operators belong to End0
F (X).

First, V − V ∗ = 0, so a(V − V ∗) is compact for all a ∈ A. Also a(1 − V 2) = a(1 + D2)−1 which is compact
from Lemma 7.21 and the boundedness of (1 +D2)−1/2. Finally, we need to show that [V, a] is compact for all
a ∈ A. First we suppose that a = am is homogenous for the T1 action. Then

[V, a] = [D, a](1 +D2)−1/2 −D(1 +D2)−1/2[(1 +D2)1/2, a](1 +D2)−1/2

= b1(1 +D2)−1/2 + V b2(1 +D2)−1/2,

75



where b1 = [D, a] = ma and b2 = [(1 + D2)1/2, a]. Provided that b2(1 + D2)−1/2 is a compact endomorphism,
Lemma 7.21 will show that [V, a] is compact for all homogenous a. So consider the action of [(1+D2)1/2, SµS

∗
ν ](1+

D2)−1/2 on x =
∑
k∈Z xk. We find∑

k∈Z
[(1 +D2)1/2, SµS

∗
ν ](1 +D2)−1/2xk =

∑
k∈Z

(
(1 + (|µ| − |ν|+ k)2)1/2 − (1 + k2)1/2

)
(1 + k2)−1/2SµS

∗
νxk

=
∑
k∈Z

fµ,ν(k)SµS∗νΦkx. (7.8)

The function
fµ,ν(k) =

(
(1 + (|µ| − |ν|+ k)2)1/2 − (1 + k2)1/2

)
(1 + k2)−1/2

goes to 0 as k → ±∞, and as the SµS∗νΦk are finite rank with orthogonal ranges, the sum in (7.8) converges
in the endomorphism norm, and so converges to a compact endomorphism. For a ∈ Ac we write a as a finite
linear combination of generators SµS∗ν , and apply the above reasoning to each term in the sum to find that
[(1+D2)1/2, a](1+D2)−1/2 is a compact endomorphism. Now let a ∈ A be the norm limit of a Cauchy sequence
{ai}i≥0 ⊂ Ac. Then

‖[V, ai − aj ]‖End ≤ 2‖ai − aj‖End → 0,

so the sequence [V, ai] is also Cauchy in norm, and so the limit is compact.

7.4 The gauge spectral triple of a graph algebra

In this section we will construct a semifinite spectral triple for those graph C∗-algebras which possess a faithful
gauge invariant trace, τ . Recall from Proposition 7.13 that such traces arise from faithful graph traces.

We will begin with the right Fc module Xc. In order to deal with the spectral projections of D we will also
assume throughout this section that E is locally finite and has no sources. This ensures, by Lemma 7.20 that
for all a ∈ A the endomorphisms aΦk of X are compact endomorphisms.

As in the proof of Proposition 7.13, we define a C-valued inner product on Xc:

〈x, y〉 := τ((x|y)R) = τ(Φ(x∗y)) = τ(x∗y).

This inner product is linear in the second variable. We define the Hilbert space H = L2(X, τ) to be the
completion of Xc for 〈·, ·〉. We need a few lemmas in order to obtain the ingredients of our spectral triple.

Lemma 7.25. The C∗-algebra A = C∗(E) acts on H by an extension of left multiplication. This defines a
faithful nondegenerate ∗-representation of A. Moreover, any endomorphism of X leaving Xc invariant extends
uniquely to a bounded linear operator on H.

Lemma 7.26. Let H,D be as above and let |D| =
√
D∗D =

√
D2 be the absolute value of D. Then for

SαS
∗
β ∈ Ac, the operator [|D|, SαS∗β ] is well-defined on Xc, and extends to a bounded operator on H with

‖[|D|, SαS∗β ]‖∞ ≤
∣∣∣|α| − |β|∣∣∣.

Similarly, ‖[D, SαS∗β ]‖∞ =
∣∣∣|α| − |β|∣∣∣.
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Corollary 7.27. The algebra Ac is contained in the smooth domain of the derivation δ where for T ∈ B(H),
δ(T ) = [|D|, T ]. That is

Ac ⊆
⋂
n≥0

dom δn.

Definition 7.28. Define the ∗-algebra A ⊂ A to be the completion of Ac in the δ-topology. By Lemma 5.6, A
is Fréchet and stable under the holomorphic functional calculus.

Lemma 7.29. If a ∈ A then [D, a] ∈ A and the operators δk(a), δk([D, a]) are bounded for all k ≥ 0. If
φ ∈ F ⊂ A and a ∈ A satisfy φa = a = aφ, then φ[D, a] = [D, a] = [D, a]φ. The norm closed algebra generated
by A and [D,A] is A. In particular, A is quasi-local.

We leave the straightforward proofs of these statements to the reader.

7.4.1 Traces and compactness criteria

We still assume that E is a locally finite graph with no sources and that τ is a faithful semifinite lower semi-
continuous gauge invariant trace on C∗(E). We will define a von Neumann algebra N with a faithful semifinite
normal trace τ̃ so that A ⊂ N ⊂ B(H), where A and H are as defined in the last subsection. Moreover the
operator D will be affiliated to N . The aim of this subsection will then be to prove the following result.

Theorem 7.30. Let E be a locally finite graph with no sources, and let τ be a faithful, semifinite, gauge
invariant, lower semiconitnuous trace on C∗(E). Then (A,H,D) is a QC∞, (1,∞)-summable, odd, local,
semifinite spectral triple (relative to (N , τ̃)). For all a ∈ A, the operator a(1 + D2)−1/2 is not trace class. If
v ∈ E0 has no sinks downstream

τ̃ω(pv(1 +D2)−1/2) = 2τ(pv),

where τ̃ω is any Dixmier trace associated to τ̃ .

We require the definitions of N and τ̃ , along with some preliminary results.

Definition 7.31. Let End00
F (Xc) denote the algebra of finite rank operators on Xc acting on H. Define N =

(End00
F (Xc))′′, and let N+ denote the positive cone in N .

Definition 7.32. Let T ∈ N and µ ∈ E∗. Let |v|k = the number of paths of length k with range v, and define
for |µ| 6= 0

ωµ(T ) = 〈Sµ, TSµ〉+
1

|r(µ)||µ|
〈S∗µ, TS∗µ〉.

For |µ| = 0, Sµ = pv, for some v ∈ E0, set ωµ(T ) = 〈Sµ, TSµ〉. Define

τ̃ : N+ → [0,∞], by τ̃(T ) = lim
L↗

∑
µ∈L⊂E∗

ωµ(T )

where L is in the net of finite subsets of E∗.

Remark For T, S ∈ N+ and λ ≥ 0 we have

τ̃(T + S) = τ̃(T ) + τ̃(S) and τ̃(λT ) = λτ̃(T ) where 0×∞ = 0.
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Proposition 7.33. The function τ̃ : N+ → [0,∞] defines a faithful normal semifinite trace on N . Moreover,

End00
F (Xc) ⊂ Nτ̃ := span{T ∈ N+ : τ̃(T ) <∞},

the domain of definition of τ̃ , and

τ̃(ΘR
x,y) = 〈y, x〉 = τ(y∗x), x, y ∈ Xc.

Notation If g : E0 → R+ is a faithful graph trace, we shall write τg for the associated semifinite trace on
C∗(E), and τ̃g for the associated faithful, semifinite, normal trace on N constructed above.

Lemma 7.34. Let E be a locally finite graph with no sources and a faithful graph trace g. Let v ∈ E0 and
k ∈ Z. Then

τ̃g(pvΦk) ≤ τg(pv)

with equality when k ≤ 0 or when k > 0 and there are no sinks within k vertices of v.

Proposition 7.35. Assume that the directed graph E is locally finite, has no sources and has a faithful graph
trace g. For all a ∈ Ac the operator a(1 +D2)−1/2 is in the ideal L(1,∞)(N , τ̃g).

Remark Using Proposition 7.8, one can check that

ress=0τ̃g(pv(1 +D2)−1/2−s) =
1
2
τ̃gω(pv(1 +D2)−1/2). (7.9)

We will require this formula when we apply the local index theorem.

Corollary 7.36. Assume E is locally finite, has no sources and has a faithful graph trace g. Then for all a ∈ A,
a(1 +D2)−1/2 ∈ KN .

7.5 The index pairing

Having constructed semifinite spectral triples for graph C∗-algebras arising from locally finite graphs with no
sources and a faithful graph trace, we can apply the semifinite local index theorem described in [CPRS2]. See
also [CPRS3, CM, H].

There is a C∗-module index, which takes its values in the K-theory of the core. The numerical index is obtained
by applying the trace τ̃ to the difference of projections representing the K-theory class coming from the C∗-
module index.

Thus for any unitary u in a matrix algebra over the graph algebra A

〈[u], [(A,H,D)]〉 ∈ τ̃∗(K0(F )).

We compute this pairing for unitaries arising from loops (with no exit), which provide a set of generators of
K1(A). To describe the K-theory of the graphs we are considering, we employ the notion of ends.
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Definition 7.37. Let E be a row-finite directed graph. An end will mean a sink, a loop without exit or an
infinite path with no exits.

Remark We shall identify an end with the vertices which comprise it. Once on an end (of any sort) the graph
trace remains constant.

Lemma 7.38. Let C∗(E) be a graph C∗-algebra such that no loop in the locally finite graph E has an exit.
Then,

K0(C∗(E)) = Z#ends, K1(C∗(E)) = Z#loops.

If A = C∗(E) is nonunital, we will denote by A+ the algebra obtained by adjoining a unit to A; otherwise we
let A+ denote A.

Definition 7.39. Let E be a locally finite graph such that C∗(E) has a faithful graph trace g. Let L be a loop in
E, and denote by p1, . . . , pn the projections associated to the vertices of L and S1, . . . , Sn the partial isometries
associated to the edges of L, labelled so that S∗nSn = p1 and

S∗i Si = pi+1, i = 1, . . . , n− 1, SiS
∗
i = pi, i = 1, . . . , n.

Lemma 7.40. Let A = C∗(E) be a graph C∗-algebra with faithful graph trace g. For each loop L in E we
obtain a unitary in A+,

u = 1 + S1 + S2 + · · ·+ Sn − (p1 + p2 + · · ·+ pn),

whose K1(A) class does not vanish. Moreover, distinct loops give rise to distinct K1(A) classes, and we obtain
a complete set of generators of K1(A) in this way.

Proposition 7.41. Let E be a locally finite graph with no sources and a faithful graph trace g and A = C∗(E).
The pairing between the spectral triple (A,H,D) of Theorem 7.30 with K1(A) is given on the generators of
Lemma 7.40 by

〈[u], [(A,H,D)]〉 = −
n∑
i=1

τg(pi) = −nτg(p1).

Proof. The semifinite local index formula, [CPRS2] provides a general formula for the Chern character of
(A,H,D). In our setting it is given by a one-cochain

φ1(a0, a1) = ress=0

√
2πiτ̃g(a0[D, a1](1 +D2)−1/2−s),

and the pairing (spectral flow) is given by

sf(D, uDu∗) = 〈[u], (A,H,D)〉 =
1√
2πi

φ1(u, u∗).

Now [D, u∗] = −
∑
S∗i and u[D, u∗] = −

∑n
i=1 pi. Using Equation (7.9) and Proposition 7.35,

sf(D, uDu∗) = −ress=0τ̃g(
n∑
i=1

pi(1 +D2)−1/2−s) = −
n∑
i=1

τg(pi) = −nτg(p1),

the last equalities following since all the pi have equal trace and there are no sinks ‘downstream’ from any pi,
since no loop has an exit.
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Remark The C∗-algebra of the graph consisting of a single edge and single vertex is C(S1) (we choose Lebesgue
measure as our trace, normalised so that τ(1) = 1). For this example, the spectral triple we have constructed
is the Dirac triple of the circle, (C∞(S1), L2(S1), 1

i
d
dθ ), (as can be seen from Corollary 7.43 below.) The index

theorem above gives the correct normalisation for the index pairing on the circle. That is, if we denote by z the
unitary coming from the construction of Lemma 7.40 applied to this graph, then 〈[z̄], (A,H,D)〉 = 1.

Proposition 7.42. Let E be a locally finite graph with no sources and a faithful graph trace g, and A = C∗(E).
The pairing between the spectral triple (A,H,D) of Theorem 7.30 with K1(A) can be computed as follows. Let
P be the positive spectral projection for D, and perform the C∗ index pairing [KNR]

K1(A)×KK1(A,F )→ K0(F ), [u]× [(X,P )]→ [kerPuP ]− [cokerPuP ].

Then we have

sf(D, uDu∗) = τ̃g(kerPuP )− τ̃g(cokerPuP ) = τ̃g∗([kerPuP ]− [cokerPuP ]).

Proof. It suffices to prove this on the generators of K1(A) arising from loops L in E. Let u = 1+
∑
i Si−

∑
i pi be

the corresponding unitary in A+ defined in Lemma 7.40. We will show that kerPuP = {0} and that cokerPuP =∑n
i=1 piΦ1. For a ∈ PX write a =

∑
m≥1 am. For each m ≥ 1 write am =

∑n
i=1 piam + (1−

∑n
i=1 pi)am. Then

PuPam = P (1−
n∑
i=1

pi +
n∑
i=1

Si)am

= P (1−
n∑
pi +

n∑
Si)(

n∑
piam) + P (1−

n∑
pi +

n∑
Si)(1−

n∑
pi)am

= P

n∑
Siam + P (1−

n∑
pi)am

=
n∑
Siam + (1−

n∑
pi)am.

It is clear from this computation that PuPam 6= 0 for am 6= 0.

Now suppose m ≥ 2. If
∑n
i=1 piam = am then am = limN

∑N
k=1 SµkS

∗
νk

with |µk| − |νk| = m ≥ 2 and Sµk1
= Si

for some i. So we can construct bm−1 from am by removing the initial Si’s. Then am =
∑n
i=1 Sibm−1, and∑n

i=1 pibm−1 = bm−1. For arbitrary am, m ≥ 2, we can write am =
∑
i piam + (1−

∑
i pi)am, and so

am =
n∑
piam + (1−

n∑
pi)am

=
n∑
Sibm−1 + (1−

n∑
pi)am and by adding zero

=
n∑
Sibm−1 + (1−

n∑
pi)bm−1 +

( n∑
Si + (1−

n∑
pi)
)
(1−

n∑
pi)am

= ubm−1 + u(1−
n∑
pi)am

= PuPbm−1 + PuP (1−
n∑
pi)am.

Thus PuP maps onto
∑
m≥2 ΦmX.
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For m = 1, if we try to construct b0 from
∑n
i=1 pia1 as above, we find PuPb0 = 0 since Pb0 = 0. Thus

cokerPuP =
∑n

piΦ1X. By Proposition 7.41, the pairing is then

sf(D, uDu∗) = −
n∑
τg(pi) = −τ̃g(

n∑
piΦ1)

= −τ̃g∗([cokerPuP ]) = −τ̃g(cokerPuP ). (7.10)

Thus we can recover the numerical index using τ̃g and the C∗-index.

The following example shows that the semifinite index provides finer invariants of directed graphs than those
obtained from the ordinary index. The ordinary index computes the pairing between the K-theory and K-
homology of C∗(E), while the semifinite index also depends on the core and the gauge action.

Corollary 7.43 (Example). Let C∗(En) be the algebra determined by the graph

· · · • • • • L
.........
..........
............
..................................................................................................................................................................................................
............

..........
.........


........
...
........
........
...

where the loop L has n edges. Then C∗(En) ∼= C(S1)⊗K for all n, but n is an invariant of the pair of algebras
(C∗(En), Fn) where Fn is the core of C∗(En).

Proof. Observe that the graph En has a one parameter family of faithful graph traces, specified by g(v) = r ∈ R+

for all v ∈ E0.

First consider the case where the graph consists only of the loop L. The C∗-algebra A of this graph is isomorphic
to Mn(C(S1)), via

Si → ei,i+1, i = 1, . . . , n− 1, Sn → idS1en,1,

where the ei,j are the standard matrix units for Mn(C). The unitary

S1S2 · · ·Sn + S2S3 · · ·S1 + · · ·+ SnS1 · · ·Sn−1

is mapped to the orthogonal sum idS1e1,1 ⊕ idS1e2,2 ⊕ · · · ⊕ idS1en,n. The core F of A is Cn = C[p1, . . . , pn].
Since KK1(A,F ) is equal to

⊕nKK1(A,C) = ⊕nKK1(Mn(C(S1)),C) = ⊕nK1(C(S1)) = Zn

we see that n is the rank of KK1(A,F ) and so an invariant, but let us link this to the index computed in
Propositions 7.41 and 7.42 more explicitly. Let φ : C(S1)→ A be given by φ(idS1) = S1S2 · · ·Sn⊕

∑n
i=2 ei,i. We

observe that D =
∑n
i=1 piD because the ‘off-diagonal’ terms are piDpj = Dpipj = 0. Since S1S

∗
1 = S∗nSn = p1,

we find (with P the positive spectral projection of D)

φ∗(X,P ) = (p1X, p1Pp1)⊕ degenerate module ∈ KK1(C(S1), F ).

Now let ψ : F → Cn be given by ψ(
∑
j zjpj) = (z1, z2, ..., zn). Then

ψ∗φ
∗(X,P ) = ⊕nj=1(p1Xpj , p1Pp1) ∈ ⊕nK1(C(S1)).
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Now X ∼= Mn(C(S1)), so p1Xpj ∼= C(S1) for each j = 1, . . . , n. It is easy to check that p1Dp1 acts by 1
i
d
dθ on

each p1Xpj , and so our Kasparov module maps to

ψ∗φ
∗(X,P ) = ⊕n(C(S1), P 1

i
d
dθ

) ∈ ⊕nK1(C(S1)),

where P 1
i
d
dθ

is the positive spectral projection of 1
i
d
dθ . The pairing with idS1 is nontrivial on each summand,

since φ(idS1) = S1 · · ·Sn ⊕
∑n
i=2 ei,i is a unitary mapping p1Xpj to itself for each j. So we have, [HR],

idS1 × ψ∗φ∗(X,P ) =
n∑
j=1

Index(PidS1P : p1PXpj → p1PXpj)

= −
n∑
j=1

[pj ] ∈ K0(Cn). (7.11)

By Proposition 7.42, applying the trace to this index gives −nτg(p1). Of course in Proposition 7.42 we used the
unitary S1 + S2 + · · ·+ Sn, however in K1(A)

[S1S2 · · ·Sn] = [S1 + S2 + · · ·+ Sn] = [idS1 ].

To see this, observe that

(S1 + · · ·+ Sn)n = S1S2 · · ·Sn + S2S3 · · ·S1 + · · ·+ SnS1 · · ·Sn−1.

This is the orthogonal sum of n copies of idS1 , which is equivalent in K1 to n[idS1 ]. Finally, [S1+· · ·+Sn] = [idS1 ]
and so

[(S1 + · · ·+ Sn)n] = n[S1 + · · ·+ Sn] = n[idS1 ].

Since we have cancellation in K1, this implies that the class of S1+· · ·+Sn coincides with the class of S1S2 · · ·Sn.

Having seen what is involved, we now add the infinite path on the left. The core becomes K ⊕ K ⊕ · · · ⊕ K (n
copies). Since A = C(S1)⊗K = Mn(C(S1))⊗K, the intrepid reader can go through the details of an argument
like the one above, with entirely analogous results.

Since the invariants obtained from the semifinite index are finer than the isomorphism class of C∗(E), depending
as they do on C∗(E) and the gauge action, they can be regarded as invariants of the differential structure. That
is, the core F can be recovered from the gauge action, and we regard these invariants as arising from the
differential structure defined by D. Thus in this case, the semifinite index produces invariants of the differential
topology of the noncommutative space C∗(E).

7.6 The relationship between semifinite triples and KK-theory

In order to construct a semifinite spectral triple for a graph algebra with gauge invariant trace, we first con-
structed a Kasparov module. The numerical index we computed was then compatible with the Kasparov product
(K-theory-valued index). The question is whether this is always the case. The following proposition from [KNR]
gives an affirmative answer.
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Proposition 7.44. Let (A,H,D) be a unital semifinite spectral triple relative to (N , τ). Suppose that the norm
closure A = A of A, is a separable C∗-algebra. Let u ∈ A be unitary. Set Dt = (1−t)D+tu∗Du = D+tu∗[D, u],
then the unbounded semifinite spectral flow of the path t 7→ Dt is given by

sf{Dt} = τ∗
(
Qker(pup+1−p)

)
− τ∗

(
Qker(pu∗p+1−p)

)
where τ∗ : K0(KN ) → R is the homomorphism induced by the trace τ and p = χ[0,∞)(FD). In addition there
exist a separable C∗-algebra B ⊆ KN and a class [DB ] ∈ KK1(A,B) such that

sf{Dt} = τ
(
i∗([u]⊗A [DB ])

)
where i : B → KN is the inclusion and [u] ∈ K1(A) is the class of the unitary.

Thus semifinite index theory turns out to be a special, computable, case of Kasparov theory.

The greater the constraint we can place on the ‘right-hand’ algebra B, the more constraint we
place on the possible values of the index. Since the index is a priori any real number, this can
be very important.

For the graph of the previous section, the index actually tells us the value of the graph trace on a projection
(analytic input), and the number of vertices on the loop (topological data).

7.7 Modular spectral triples, type III von Neumann algebras and
KMS states

The Cuntz algebra On is a graph algebra and we can construct a Kasparov module. However, it has no traces,
so we can not construct a semifinite spectral triple.

The subject of ongoing research at the moment is understanding how to do index theory for KMS states. This
has been done for the Cuntz algebra, [CPR2], quantum SU(2), [CRT], and for the general situation where the
time evolution is periodic, [CNNR]. More examples where the time evolution is not periodic are being studied.

While this would take us too far afield, the subject is exciting. Connections to quantum statistical mechanics,
equivariant KK-theory and numerous other fields are developing. Examples from arithmetic geometry have
produced invariants of Mumford curves.

The possibility of obtaining invariants in such a radically diverse collection of examples is, I hope, a sufficiently
exciting place to end.
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Appendix A

Unbounded operators on Hilbert space

This appendix is stolen primarily from [HR], but also see [RS].

Definition A.1. An unbounded operator D on a Hilbert space H is a linear map from a subspace DomD ⊂ H
(called the domain of D) to H. The unbounded operator D is said to be densely defined if DomD is dense in H.

Remark We are really only interested in densely defined operators.

Definition A.2. If D,D′ are unbounded operators on H and DomD ⊂ DomD′ and Dξ = D′ξ for all ξ ∈ DomD,
then we write D ⊆ D′ and say that D′ is an extension of D.

Definition A.3. If D is an (unbounded) operator on H, the graph of D is the subspace {(ξ,Dξ) : ξ ∈ DomD} ⊂
H×H. The operator D is said to be closed if the graph is a closed subspace of H×H. The operator D is said
to be closable if D has a closed extension D′.

If domD is all of H and D is closed, then the closed graph theorem shows that D is bounded. For an unbounded
operator D to be closed we must have: whenever {ξk}k≥1 ⊂ DomD is a convergent sequence such that {Dξk}k≥1

is also a convergent sequence we have limk→∞Dξk = D limk→∞ ξk.

Any closable operator has a closure D̄ ⊇ D which is the operator whose graph is the closure of the graph of D.

Definition A.4. Let D be an unbounded densely defined operator on H. Define

DomD∗ = {η ∈ H : ∀ξ ∈ DomD ∃ρ ∈ H such that 〈Dξ, η〉 = 〈ξ, ρ〉}.

Then we define D∗ : DomD∗ → H by D∗η = ρ. This is well-defined, and the operator D∗ is closed.

Exercise Prove the two assertions of the definition.

Definition A.5. An operator D is symmetric if D ⊆ D∗, so

〈Dξ, η〉 = 〈ξ,Dη〉 for all ξ, η ∈ DomD.

The operator D is self-adjoint if D = D∗, so D is symmetric and DomD = DomD∗.
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Despite appearances, there is a world of difference between symmetric and self-adjoint operators. If D is
symmetric then it is closable and D ⊆ D̄ ⊆ D∗. If DomD̄ = DomD∗ then we say that D is essentially
self-adjoint, meaning it has a unique self-adjoint extension.

Let D be a closed operator, and give DomD the graph norm

‖ξ‖2D = ‖ξ‖2 + ‖Dξ‖2.

Then DomD is closed in the topology coming from the graph norm. The resolvent set of D is the set of all
λ ∈ C such that the operator

(D − λIdH) : DomD → H

has a two-sided inverse. Any such inverse is a bounded operator from H to DomD and so is a bounded operator.

The spectrum of D is the complement of the resolvent set, i.e. those λ ∈ C such that (D − λIdH) is not
invertible.

Lemma A.6. The spectrum of a self-adjoint operator is real.

This allows us, after some effort, to come up with a functional calculus for self-adjoint operators. This functional
calculus allows us to define f(D) for any bounded Borel function on the spectrum of D. If fn → f pointwise,
then fn(D) → f(D) in the strong operator topology. With suitable care with domains, it is also possible to
define unbounded Borel functions of D. For a thorough discussion of this, see [RS].

Two important results for us:

Any differential operator on a manifold-without-boundary is closable.

Every symmetric differential operator on a compact manifold-without-boundary is essentially self-adjoint.

These two results can be found in [HR].

Finally, an unbounded operator D on a Hilbert space H is said to be affiliated to a von Neumann algebra
N ⊂ B(H) if for all projections p ∈ N ′ we have p : domD → domD and Dp = pD.
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Appendix B

Cyclic cohomology and the Chern
character

A central feature of [C1] is the translation of the K-theory pairing to cyclic theory in order to obtain index
theorems. One associates to a suitable representative of a K-theory class, respectively a K-homology class, a
class in periodic cyclic homology, respectively a class in periodic cyclic cohomology, called a Chern character in
both cases. The principal result is then

sf(D, uDu∗) = 〈[u], [(A,H,D)]〉 = − 1√
2πi
〈[Ch∗(u)], [Ch∗(A,H,D)]〉, (B.1)

where [u] ∈ K1(A) is a K-theory class with representative u and [(A,H,D)] is the K-homology class of the
spectral triple (A,H,D). A similar statement holds in the even case.

On the right hand side, Ch∗(u) is the Chern character of u, and [Ch∗(u)] its periodic cyclic homology class.
Similarly [Ch∗(A,H,D)] is the periodic cyclic cohomology class of the Chern character of (A,H,D). The
analogue of Equation (B.1), for a suitable cocycle associated to (A,H,D), in the general semifinite case is part
of the statement of the (semifinite) local index formula.

We will use the normalised (b, B)-bicomplex (see [C1, L]). The reason for this is that one can easily realise the
Chern character of a finitely summable Fredholm module, a cyclic cocycle, in the b, B picture, but going the
other way requires substantial work, [CPRS4].

We introduce the following linear spaces. Let Cm = A⊗ Ā⊗m where Ā is the quotient A/CI with I being the
identity element of A and (assuming with no loss of generality that A is complete in the δ-topology) we employ
the projective tensor product. Let Cm = Hom(Cm,C) be the linear space of continuous multilinear functionals
on Cm. We may define the (b, B) bicomplex using these spaces (as opposed to Cm = A⊗m+1 et cetera) and
the resulting cohomology will be the same. This follows because the bicomplex defined using A ⊗ Ā⊗m is
quasi-isomorphic to that defined using A⊗A⊗m.
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A normalised (b,B)-cochain, φ, is a finite collection of continuous multilinear functionals on A,

φ = {φm}m=1,2,...,M with φm ∈ Cm.

It is a (normalised) (b,B)-cocycle if, for all m, bφm + Bφm+2 = 0 where b : Cm → Cm+1, B : Cm → Cm−1

are the coboundary operators given by

(Bφm)(a0, a1, . . . , am−1) =
m−1∑
j=0

(−1)(m−1)jφm(1, aj , aj+1, . . . , am−1, a0, . . . , aj−1)

(bφm−2)(a0, a1, . . . , am−1) =
m−2∑
j=0

(−1)jφm−2(a0, a1, . . . , ajaj+1, . . . , am−1) + (−1)m−1φm−2(am−1a0, a1, . . . , am−2)

We write (b + B)φ = 0 for brevity. Thought of as functionals on A⊗m+1 a normalised cocycle will satisfy
φ(a0, a1, . . . , an) = 0 whenever any aj = 1 for j ≥ 1. An odd (even) cochain has {φm} = 0 for m even (odd).

Similarly, a (bT,BT)-chain, c is a (possibly infinite) collection c = {cm}m=1,2,... with cm ∈ Cm. The (b, B)-
chain {cm} is a (bT,BT)-cycle if bT cm+2 +BT cm = 0 for all m. More briefly, we write (bT +BT )c = 0. Here
bT , BT are the boundary operators of cyclic homology, and are the transpose of the coboundary operators b, B
in the following sense.

The pairing between a (b, B)-cochain φ = {φm}Mm=1 and a (bT , BT )-chain c = {cm} is given by (M ∈ N or
M =∞)

〈φ, c〉 =
M∑
m=1

φm(cm).

This pairing satisfies
〈(b+B)φ, c〉 = 〈φ, (bT +BT )c〉.

We use this fact in the following way. We call c = (cm)m odd an odd normalised (bT,BT)-boundary if there is
some even chain e = {em}m even with cm = bT em+1 +BT em−1 for all m. If we pair a normalised (b, B)-cocycle
φ with a normalised (bT , BT )-boundary c we find

〈φ, c〉 = 〈φ, (bT +BT )e〉 = 〈(b+B)φ, e〉 = 0.

There is an analogous definition in the case of even chains c = (cm)m even. All of the cocycles we consider in
these notes are in fact defined as functionals on ⊕mA⊗Ā⊗m. Henceforth we will drop the superscript on bT , BT

and just write b, B for both boundary and coboundary operators as the meaning will be clear from the context.

We recall that the Chern character Ch∗(u) of a unitary u ∈ A is the following (infinite) collection of odd chains
Ch2j+1(u) satisfying bCh2j+3(u) +BCh2j+1(u) = 0,

Ch2j+1(u) = (−1)jj!u∗ ⊗ u⊗ u∗ ⊗ · · · ⊗ u (2j + 2 entries).

Exercise Check that Ch∗(u) is a (b, B)-cycle.
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Similarly, the (b, B) Chern character of a projection p in an algebra A is an even (b, B) cycle with 2m-th
term,m ≥ 1, given by

Ch2m(p) = (−1)m
(2m)!
2(m!)

(2p− 1)⊗ p⊗2m.

For m = 0 the definition is Ch0(p) = p.

Exercise Check that Ch∗(p) is a (b, B)-cycle.

Since the (b, B) Chern character of a projection or unitary has infinitely many terms, we need some constraint
on the cochains we pair them with.

If we allow only finitely supported cochains, then we obtain the usual cyclic cohomology groups HC(A). The
Chern character of a finitely summable spectral triple is finitely supported.

If we allow infinitely supported cochains which satisfy some decay condition α, then we get something we shall
call HCα(A). The most commonly used condition is to look at entire cochains, and the reason for this is that
the JLO cocycle is entire; see [C1]. Very often one finds that for any reasonable decay condition α we have
HCα(A) ∼= HC(A), but general statements are hard to find.

A final warning: cyclic (co)homology of a C∗-algebra is trivial. It is necessary to work with a smooth subalgebra,
or employ a fancy theory called local cyclic (co)homology due to Puschnigg. Alternatively, one could do KK
with your favourite smooth algebras. This approach is developed by Cuntz.

In general I like the tension between continuous and smooth theories, and passing back and forth teaches you
something about the way ‘differentiable structures’ appear.
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