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Introduction: Compactifications in String Theories



We are looking for the origin of 4D physics

- Physical information ~
@  Particle contents and spectra

©  (Broken) symmetries

@  Potential, vacuum and cosmological constant
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What kind of 4D models come from String Theories?

l

What kind of Compactifications?

4 = 10—6 = 11 -7
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B. de Wit and J. Louis, in the Proceedings “"NATO Advanced Study Institute on Strings, Branes and Dualities (1997)" hep-th/9801132
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® Many Abelian Supergravities (SUGRA) in lower dimensions
Compactifications on Tori, Calabi-Yaus, etc.
Minkowski ground state, massless fields

Global E7 symmetry (4D N = 8 case)

® Many Gauged SUGRA in lower dimensions
Compactifications on group manifolds, torsionful manifolds, etc.
Scalar potential generating masses [Moduli Stabilization]

Non-trivial cosmological constant
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There are various Gauged SUGRA
which cannot be derived from String Theories

compactified on conventional geometric backgrounds
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There are various Gauged SUGRA
which cannot be derived from String Theories

compactified on conventional geometric backgrounds

I
I
\ 2

We want to derive all Gauged SUGRA from String Theories
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There are various Gauged SUGRA
which cannot be derived from String Theories

compactified on conventional geometric backgrounds

I
I
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We want to derive all Gauged SUGRA from String Theories
Compactify String Theories on non-conventional geometries:
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There are various Gauged SUGRA
which cannot be derived from String Theories

compactified on conventional geometric backgrounds

I
I
\ 2

We want to derive all Gauged SUGRA from String Theories
Compactify String Theories on non-conventional geometries:

Nongeometric String Backgrounds

TETSUJI KIMURA: GENERALIZED GEOMETRIES IN STRING COMPACTIFICATION SCENARIOS



What is a Nongeometric String Background?

Structure group = Diffeo. (GL(d,R)) + Duality transf. groups

!

coming from String dualities

GL(d,R) + duality transf.

__________
- ~

d-dim. internal space M, ~ monodrofold

TETSUJI KIMURA: GENERALIZED GEOMETRIES IN STRING COMPACTIFICATION SCENARIOS



SUGRA on Nongeometric String Backgrounds

cf.) Lower-dim. Gauged SUGRA compactified by Scherk-Schwarz mechanism

[Zayzb: — fabc Zc_|_[{abc)(C
"Kaloper-Myers" algebra:  [X? X = Q% X¢+ R Z,
X Zp] = fU%e X — Q% Ze

Various “fluxes” are involved

N. Kaloper, R.C. Myers hep-th/9901045
J. Shelton, W. Taylor, B. Wecht hep-th /0508133, A. Dabholkar, C.M. Hull hep-th /0512005

M. Grana, R. Minasian, M. Petrini, D. Waldram arXiv:0807.4527
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4 N
String Theories compactified on Nongeometric Backgrounds

l

All(7) Gauged SUGRA

Hitchin's Generalized Geometries to study vacua

Hull's Doubled Formalism to find gauge symmetries
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® Calabi-Yau three-folds --+ Fluxes are highly restricted

type ITA: No fluxes
type IIB: F35—7H (warped Calabi-Yau)

2/

heterotic: No fluxes

® SU(3)-structure manifolds --+ Some components of fluxes can be interpreted as torsion

Piljin Yi, TK “Comments on heterotic flux compactifications’ JHEP 0607 (2006) 030, hep-th/0605247
TK “Index theorems on torsional geometries” JHEP 0708 (2007) 048, arXiv:0704.2111

® Generalized geometries --+ Any types of fluxes can be introduced

“Complete” classification of N/ = 1 SUSY solutions

TETSUJI KIMURA: GENERALIZED GEOMETRIES IN STRING COMPACTIFICATION SCENARIOS


http://www.slac.stanford.edu/spires/find/hep/wwwbrieflatex?rawcmd=FIND+KEY+6664385&FORMAT=www&SEQUENCE=
http://www.slac.stanford.edu/spires/find/hep/wwwbrieflatex?rawcmd=FIND+KEY+7153210&FORMAT=www&SEQUENCE=

tion and Results

Search 4D SUSY vacua in type ITA theory compactified on generalized geometries

® Moduli stabilization
We find SUSY AdS (or Minkowski) vacua

® Mathematical feature
We obtain a powerful rule to evaluate vacua:

Discriminant of the superpotential governs the cosmological constant

® Stringy effects

We see that o’ corrections are included in certain configurations
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Decompositions of spinors in 10D type II string theories

Decomposition of vector bundle on 10D spacetime:

TMg1=T31DF
T31: areal SO(3,1) vector bundle
F : an SO(6) vector bundle which admits a pair of SU(3) structures
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Decompositions of spinors in 10D type II string theories

Decomposition of vector bundle on 10D spacetime:

TMg1=T31DF
T31: areal SO(3,1) vector bundle
F : an SO(6) vector bundle which admits a pair of SU(3) structures

Decomposition of Lorentz symmetry:

Spin(9,1) — Spin(3,1) x Spin(6) = SL(2,C) x
16 =(2,4) @ (2,4) 16 = (2,4) @ (2,4)
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Decompositions of spinors in 10D type II string theories

Decomposition of vector bundle on 10D spacetime:

TMg1=T31DF
T31: areal SO(3,1) vector bundle
F : an SO(6) vector bundle which admits a pair of SU(3) structures

Decomposition of Lorentz symmetry:

Spin(9,1) — Spin(3,1) x Spin(6) = SL(2,C) x SU(4)
16 =(2,4) @ (2,4) 16 = (2,4) @ (2,4)

Decomposition of supersymmetry parameters (with a,b € C):

eia = e1® (@nl)+ef @ (ani) e = 1@ (@nt) +ef@ (ankl)
eha = €20 (bn?) +e5® (bn?) g = €20 (bn2) +e5® (bnk)

Set SU(3) invariant spinor nf s.t. VIt =0 (4=1,2)

a pair of SU(3) on F (n},n7) «— asingle SU(3)on F (n} =n7 =1n.)
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Geometric objects

a real two-form Jmn = F2i nl Ve Tt
with a single SU(3): [ R CE LT P LRt
a complex three-form | €, = —2i nT_ Vmnp M
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Geometric objects

a real two-form Jmn = F2i nl Ve Tt
with a single SU(3): [ R CE LT P LRt
a complex three-form | €, = —2i nT_ Vmnp M4
two real vectors (v —iv")™ = nfvm n?
Jl=j+vAd, Q=wA v+
with a pair of SU(3): / ( )
(J4, Q1) Ji=j—vAv, P=wA(v-—iv)
(j,w): locally SU(2)-invariant two-forms
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a real two-form Jmn = F2i nl Ve Tt
with a single SU(3): [ R CE LT P LRt
a complex three-form | €, = —2i nT_ Vmnp M4
two real vectors (v —iv")™ = nfvm n?
Jl=j+vAd, Q=wA v+
with a pair of SU(3): / ( )
(J4, Q1) Ji=j—vAv, P=wA(v-—iv)
(j,w): locally SU(2)-invariant two-forms

ni = gy et i) mnl, gt el =1

If n1 # n7 globally: a single SU(2) w/ (j,w,v,v)
If n} = n3 globally: a single SU(3) w/ (J,9)

a pair of SU(3) on F' ~ SU(3) x SU(3) on F & F*



C X y UTC O10
A

‘1] Information from Killing spinor egs. with torsion VT ne = 0 (Pcomplex Weyl ny)
Invariant p-forms on SU (3)-structure manifold:
a real two-form Imn = F2i1 nl Vi T+
a holomorphic three-form  €,,,,,, = —2i nT_ Vmnp M

dJ = glm(Wlﬂ)+W4/\J+W3 dQ = WiJAJ+WoAJ+WsAQ

Five classes of (intrinsic) torsion are given as

components interpretations SU (3)-representations
W1 JANAQ or QAdJ 151
Wy (dQ)2? 8@ 8
Wi (ANt + (dJ])y” 6D 6
Wy JANdJ 303
W (d2)3:1 3®3
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Classification of SU (3)-structure manifolds:

hermitian Wi =Wy =0

balanced Wi =Wy =W, =0

special hermitian Wi =Wy =W, =Ws=0
complex

Kahler Wl :W2 :Wg :W4:O

Calabi-Yau Wl = W2 = W3 = W4 = W5 =0

conformally Calabi-Yau W; =Wy =W3 =3W, +2W5 =0

symplectic Wi =Ws =W, =
nearly Kahler Wy =W3 =W, =Wy =0
almost Kahler Wi =Ws =W, =Wy =
almost complex
quasi Kahler W3 =W, = W5 =
semi Kahler W4 = W5 =0
half-flat ImW; =ImWy =W, = W5 =0
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Generalized almost complex structures

Introduce a generalized almost complex structure J on F' ¢ F'* s.t.

J: FoF* — FopF*
J? = —1yg

3 0(d, d) invariant metric L, st. J'LJ = L

Structure group on F' & F'™*

L GL(2d) 0(d, d)
JP= 1o | 0(d,d) s Ud/2.4/2)
T Je L UNd[2,d/2)NU(d)2,d/2) > U(d/2) x U(d/2)
integrable J; o U(d/2) x U(d/2) --» SU(d/2) x SU(d/2)
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Integrability is discussed by “(0,1)" part of the complexified F' & F™*:

1

ITA = A where A =wv+ ( is a section of FF @ F™

We call this A i-eigenbundle L 7 whose dimension is dim L 7 = d.
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Integrability is discussed by “(0,1)" part of the complexified F' & F™*:

1

ITA = A where A =wv+ ( is a section of FF @ F™

We call this A i-eigenbundle L 7 whose dimension is dim L 7 = d.

Integrability condition of 7 is

H[H(v + (), I(w + 77)} = 0; v,w € section of F'; (,n € section of F'*

Courant

1
[[v +C,w+ 77] Courant = (v, w]Lie + Lon — Lo — §d(bv77 — 14,¢)  Courant bracketj
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Two examples of generalized almost complex structures:

I 0

J- = ( 0 _77T ) w/ I? = —14: almost complex structure
0 —J ! .

T = 7 o w/ J: almost symplectic form

integrable J_ < integrable I
integrable J,. < integrable J

On a usual geometry, Jp = gmp L7y is given by an SU(3) invariant (pure) spinor 74 as
Jmn = —21 7717mn77+ 72774— =0 ’anJr 7A 0

In a similar analogy, we want to find pure spinor(s) ® on gengeralized geometry.
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Cliff(6,6) pure spinors

On F @ F*, we can define Cliff(6,6) algebra and Spin(6,6) spinor ®:

{T™ "} =0 {r™ T,} = 6™ {T)n,Tn} =0
Irreducible repr. of Spin(6,6) spinor is a Majorana-\Weyl
— a generic Spin(6,6) spinor bundle S splits to ST (Weyl)
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Cliff(6,6) pure spinors

On F @ F*, we can define Cliff(6,6) algebra and Spin(6,6) spinor ®:
{T™ "} =0 {r™ I,} = om {T)n,Tn} =0
Irreducible repr. of Spin(6,6) spinor is a Majorana-\Weyl
— a generic Spin(6,6) spinor bundle S splits to ST (Weyl)
Wey! spinor bundles ST are isomorphic to bundles of forms F*:

d, € ST ~ section of A®e" F*
d_c S~ ~ section of A°U F*

A form-valued representation of the algebra

' = dﬂfm/\, Pn — Ly,
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Cliff(6,6) pure spinors

On F @ F*, we can define Cliff(6,6) algebra and Spin(6,6) spinor ®:
{T™ "} =0 {r™ I,} = om {T)n,Tn} =0
Irreducible repr. of Spin(6,6) spinor is a Majorana-\Weyl
— a generic Spin(6,6) spinor bundle S splits to ST (Weyl)
Wey! spinor bundles ST are isomorphic to bundles of forms F*:

d, € ST ~ section of A®e" F*
d_c S~ ~ section of A°U F*

A form-valued representation of the algebra

~

' = dﬂfm/\, Pn — Ly,

IF ® is annihilated by half numbers of the Cliff(6,6) generators:

— @ is called a pure spinor

cf.) SU(3) invariant spinor 74 is a pure spinor: v'n, =0
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An equivalent definition of a pure spinor ® is given by “Clifford action”:

(v+()- P = v"™py, P+ (,dx" AP w/ v: vector  (: one-form

Define the annihilator of spinors as

Ly = {v+(€FaF*|(v+() - ®=0}

If dim Ly = 6 (maximally isotropic) — @ is a pure spinor
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Correspondence

Correspondence between pure spinors and generalized almost complex structures:

J — P If Lj:ch with dim Le = 6

More precisely: J <« a line bundle of pure spinor ®

') rescaling ® does not change its annihilator Lg
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Correspondence

Correspondence between pure spinors and generalized almost complex structures:

J — P If Lj:ch with dim Le = 6

More precisely: J <« a line bundle of pure spinor ®
') rescaling ® does not change its annihilator Lg

Then, we can rewrite the generalized almost complex structure as

Jins = (Re®i, 'y Redy )

even forms: <\If_|_,(1)_|_> = U APy — Vs APy + WUy APy — Py A Py

w/ Mukai pairing:
/ P & odd forms: <\I!_,<I>_> =W A0 — W3 A D3+ Wy AP
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Correspondence

Correspondence between pure spinors and generalized almost complex structures:
J — P If Lj:ch with dim Le = 6

More precisely: J <« a line bundle of pure spinor ®

') rescaling ® does not change its annihilator Lg

Then, we can rewrite the generalized almost complex structure as

Jins = (Re®i, 'y Redy )

even forms: <\If_|_,(1)_|_> = U APy — Vs APy + WUy APy — Py A Py

w/ Mukai pairing:
/ P & odd forms: <\I!_,<I>_> =W A0 — W3 A D3+ Wy AP

J is integrable «— 7 vector v and one-form ( s.t. d® = (vL+(A)P
generalized CY «— 3®is pures.t. d® =0
“twisted” GCY «— 7® is pure, and H is closed s.t. (d — HA)® =0
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Clifford map between generalized geometry and SU(3)-structure manifold

A spinor ® can also be mapped to a bispinor by using

= (k) AL A g™ (k) e
C = k'c iy TN AT e @ = Zk,c I
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Clifford map between generalized geometry and SU(3)-structure manifold

A spinor ® can also be mapped to a bispinor by using

k" mi--—-my mi--—-my aﬁ

C = C(k) dx™ A Ada™k — ¢ = Z o (k) AT

On a geometry of a single SU(3)-structure, the following two SU (3, 3) spinors:

6
1 1 et 1 .
Qo = 77+®771 = ZZEﬂTﬂml m My Y R = ge !
k=0
6 .
1 1 1
Py = 77—|—®77Jr— - 4 k—UT Ymy - mkn—l—’yml = —gﬁ
k=0

Check purity: ((5—H,]),,,f‘%,m<§§>771L,E =0 = n+®nl’yn((5$iJ)”m

One-to-one correspondence: ®q_ <~ J1, Pop — Jo
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Clifford map between generalized geometry and SU(3)-structure manifold

A spinor ® can also be mapped to a bispinor by using

C = C(k) dx™ A Ada™k — ¢ = Z k'C(k) ml “my

k' mi---mpg my---mpg a

On a geometry of a single SU(3)-structure, the following two SU (3, 3) spinors:

6
1 1 S, 1 .
Cpp = 77_|_®77]L|- — ZE :Eﬂl’%ﬂl mp T ! 5= ée !
k=0
6 .
1 1 1
Qo = 77—|—®77Jr— = 4 k_nT Yy mkn—l—’yml Tk = —gﬁ
k=0

Check purity: ((5nLi,]),,n?"%,njL<§§>77j,E =0 = n+®nl’yn((5$iJ)”m

One-to-one correspondence: ®q_ <~ J1, Pop — Jo

On a generic geometry of a pair of SU(3)-structures defined by (n3,73)

g /
—1VvAv

Qo = 77+®?7Jr =

t 1

by = 77—1k 02 772_ = —g(cLe_ij + ic”w) A (v +iv')

(cre™" —ic w) Ne

o =

ley)? + len | =
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b, = e_BCIDOi

Each & defines an SU(3, 3) structure on E. Common structure is SU(3) x SU(3).

F is extended to E by including e =5

Compatibility requires

(O, V-P_) = (D, V-P_) =0 forVV=a+¢

(@4, 04) = (2, 2)
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Hitchin functional

Start with a real form x; € A®e"/°4d [* (associated with a real Spin(6,6) spinor x,)

Regard x r as a stable form satisfying
1 k >k
a(xs) = =500 Prsxr) (e T oxp) € APFR @ A°F

U — {Xf c /\even/oddF* ’ Q(Xf) < 0}
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Hitchin functional

Start with a real form x; € A®e"/°4d [* (associated with a real Spin(6,6) spinor x,)

Regard x r as a stable form satisfying
1 k >k
a(xs) = =500 Prsxr) (e T oxp) € APFR @ A°F

U — {Xf c /\even/oddF* ’ Q(Xf) < 0}

Define a Hitchin function

H(xy) = \/—%Q(Xf) e N°F*

which gives an integrable complex structure on U
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Hitchin functional

Start with a real form y; € A®e"/°4d F* (3ssociated with a real Spin(6,6) spinor )

Regard x r as a stable form satisfying
1 * *
a(xs) = =500 Prsxr) (e T oxp) € APFR @ A°F

U — {Xf c /\even/oddF* ’ Q(Xf) < 0}

Define a Hitchin function

1

H(xy) = \/—§Q(Xf) e N°F*

which gives an integrable complex structure on U

Then we can get another real form x ¢ and a complex form ®¢ by Mukai pairing

) . . OH(xy)
: — —dH l.e., — T a_
(XrX7) 1 (x) XS OX
-3 (I)f = 5(Xf‘|‘if(f) H((I)f) — i<q)f’$f>

Hitchin showed: @ is a (form corresponding to) pure spinor!

N.J. Hitchin math/0010054, math/0107101, math/0209099
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Consider the space of pure spinors ¢ ...

Mukai pairing (x,*) ——  symplectic structure

Hitchin function H(x) ——  complex structure

The space of pure spinor is Kahler
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Consider the space of pure spinors ¢ ...

Mukai pairing (x,*) ——  symplectic structure

Hitchin function H(x) ——  complex structure

The space of pure spinor is Kahler

Compatible with & — A® w/ \ € C*

--+ The space becomes a local special Kahler geometry with Kahler potential K:

exp(—K) = H(®) = i((®,®) = i(XAF4— X*F4) € AOF

X4 : holomorphic projective coordinates
Fa: derivative of prepotential F (F4 = 0F/0X?)
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Kahler potentials

Moduli spaces of M are special Kahler geometries of local type

Kahler potentials, prepotentials, projective coordinates

K, = —logi / (8,,3,) = —logi(XAF4 — XAF)
M

K_ = —logi/ <<I>_,6_> = —logi(7lgz—ZI§I)
M

Expand the even/odd-forms ®_ by the basis forms:

P, = X'wa— Fam?, wa = (1, w,) , o = (@*, vol(M)) :0,2,4,6-forms

& = Zla; -G8, ar = (ap, ;) , — ([37;, 60) : 1,3, 5-forms

/M (wawp) = 0, /M (wa,5B) = 645 /M lar,as) = 0. /M an, ) = &
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Geometric flux charges

On generalized geometries with a single SU(3)-structure (73 = 17 ):

dHWA = mAIOq—BIAﬁI dH(,Nc)A — 0

dga; = eraw? dpB! = malaod

where NS three-form H deforms the differential operator:
dH =0, H = H"+dB, H" = mila;—enp!

dg = d— H"'A

background charges

NS three-form flux | ejg mo’

torsion €la My,
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Nongeometric flux charges

On generalized geometries with SU(3) x SU(3) structures (1} # 77 at some points):

Extend to the generalized differential operator D:

dgy = d—H'A —- D =d-H"A—f-—Q - —-R.

I I ~ A TA A nl
Dwag ~ ma'ar—eraf Do? ~ —q¢'“ar+pr” B

Doy ~ pIA WA T €era wA Dﬁl ~ C]IA WA ‘|‘mAI wA
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Nongeometric flux charges

On generalized geometries with SU(3) x SU(3) structures (1} # 77 at some points):

Extend to the generalized differential operator D:

dgy = d—H'A —- D =d-H"A—f-—Q - —-R.

I I ~ A TA A nl
Dwag ~ ma'ar—eraf Do? ~ —q¢'“ar+pr” B

Doy ~ pIA WA T €era wA Dﬁl ~ C]IA WA ‘|‘mAI wA

The internal space becomes nongeometric:

(f - Clmy-mp fmimsClajmg--my,,)  (part of) structure const. in Gauged SUGRA
(@ C)myvmy_y Q% nyClablmsmy_,]  T-fold

B0 O ooty e = 112““6’@50,”1...mk?_3 locally nongeometric background

Hull’s Doubled formalism

Structure group = Diffeo. + duality trsf. --» .
to study gauge symmetries
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Flux charges on generalized geometry: summary

backgrounds flux charges
Calabi-Yau —
Calabi-Yau with H ero mo’
generalized geometry w/ SU(3) era  mal
generalized geometry w/ SU(3) x SU(3) | era  mal  pr*t g4
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AD N =1 scalar potential

- - 1
Vo= e (KMVDy0n DyW — 3WP2) + 51D

Vw + Vp
V. >0 : de Sitter space (non-SUSY)

Search of vacua 5’7:‘/’* =0 V.=0 : Minkowski space

V., <0 : Anti-de Sitter space
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: AD N =1 scalar potential

- - 1
Vo= e (KMVDy0n DyW — 3WP2) + 51D

Vw + Vp

V. >0 : de Sitter space (non-SUSY)
Search of vacua 073‘/]* =0 V.=0 : Minkowski space

V., <0 : Anti-de Sitter space

0 = OpViy — eK{KW DpD WD + 0o KN D WD — QWDPW}

0 = (%:VD -2 D* =0
Consider the SUSY condition DpW = ((%: + (%K)W — 0 in various cases.
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Kahler potential and dilaton

Functionals are given by two Kahler potentials on two Hodge-Kahler geometries of &

K. = —logi / (8.,3.) = —logi(XAF4 — XAF )
M

K_ = —1ogi/ (®_,®_) = —logi(Z'G;— Z'G)
M

/V016 = le_Ki = o2 +26010
M 8

K_
Introduce C = v/2ab e_¢(10) = 4abe2 7%
2 .
R K- _ ! / > P
S T T Pl MGl
_ 1 I o I
— 8|a|2|b|2[1m(cz JRe(CG1) — Re(CZ")Im(CG))]
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Superpotential and D-term

SUSY variations yield the superpotential and the D-term:

0, = Ve —atSapnBry, e = Vﬂs—e%)/\/wsc

ox* = ImF;, " e+iD"¢

1 K_ 1
= —|4ie 2 % ., DI bd_ — b, .G
V4% 461)[16 /M< +, DIm(a >>+\/§/M< +> >}
= WRR+UIW}Q+(71W(5
WRR - — —L[XAG — Famb
= 1 RRA A MRR
Q _ L A A Wl 1 | yA I IA
Wy = 4ab[X era + Fapr ], Wo 45b[X ma” +Faq }
Ul = ¢ 4+ilm(CzY), U = & +iIm(CG))
DA = 9 eK+(K_|_)ca DCXA D ,XEB [ﬁC(O'm)CBnB] (Pé — NBcﬁxc)
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Example 1: SU(3) x SU(3) generalized geometry with RR-flux charges

Xaexbxe
X0

1. Set a simple prepotential: F = D ,p.

2. Consider the simplest model: single modulus ¢ of ®. (and U of ®_)
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ixample 1: SU(3) x SU(3) generalized geometry with RR-flux charges

Xaexbxe
X0

1. Set a simple prepotential: F = D ,p.

2. Consider the simplest model: single modulus ¢ of ®. (and U of ®_)

The superpotential is reduced to

w = WRLpgmnwu
WRR = mB- 13 — 3mgrt? + errt + erro
W2 = pPt3 —3pgt? —egt — ego

DW=0 --» 0 = DWW+ U DWW
Consider the SUSY condition: :
DyW =0 --» 0 = —(WRR + Rel W@)
ImU

The discriminant of the superpotential WRR (and W) governs the SUSY solutions.
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» Discriminant of cubic equation

W(t) = at’+bt>+ct+d
OW(t) = 3at’+2bt+c

Consider a cubic function and its derivative:

Discriminants A(W) and A(9;W) are

AW) = A = —4b3d + b%c? — 4ac® + 18abed — 27a*d?
AOW) = X = 4(b* — 3ac)
W(t) A>0 A=0 A <0

T~

A >0 AN

/

.
sl oL
wlpl
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ARR > () case: always ARR >~ 0 and exists a zero point: DWRR =

DtWRRl* = 0
4RR 6 (3 ng €RRO + MMRR €RR) 9 V3 ARR
RR 24 ARR 5 0 R0 _
W = = (ARR)3 (36 (mgrr)” + 36 (mpg)“€rro — 3MRRA™ — 4impgV 3 A )
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ARR' > 0 case: always ARR >~ 0 and exists a zero point: DWRR =

DtWRR‘* = O
(RR 6 (3 mBg €RRO + TMRR €RR) o; V3 ARR
RR 24 ARR 3 0 \2 RR : 0 RR
W* = _W (36 (mRR) =F 36 (mRR) €ERRO — 3 mRR)\ — 4i mRR\/3T)

ARR <0 case: only ARR < 0 is physically allowed, and exists a zero point: WRR = (

WRR = mle(ty —e)ti — )ty —a@) = 0, t, = ™ = a1 +im
PR —|—F2/3 e 12mRRF1/3
(0% =
' 12m, F1/3
1
(a2)? = —O(BRR — 6:mgray + 3mgg (041)2>
MRR
: (= 3mrr+2mbgas)
(4 = — —a — mRR mRR al
MRR
F = 108 (m3)%erro + 12m3x vV —3ARR + 108 (mggr)> — 9 mgr ARR
DWRRI, = 2imis(e — af¥)ay

... Analysis of W2 is also discussed.
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Three types of solutions to satisfy 0 = D VR + UD WY and 0 = WRR + ReU WY
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Three types of solutions to satisfy 0 = D VR + UD WY and 0 = WRR + ReU WY

® SUSY AdS vacuum: moduli are (almost) stabilized

T T 4 | AR
Vi = =3e | Wi = Re(CoEY 3 < 0()
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Three types of solutions to satisfy 0 = D VR + UD WY and 0 = WRR + ReU WY

® SUSY AdS vacuum: moduli are (almost) stabilized

r ™
ARR > 0, A? > 0; DWRR, =0 = DWY,
________________________________________________________________ -
tRR = % ReU, = —W*Q

Wi
4 AQ
V. = =37 = — \/ < 0(1)
Re(C 2V 3

\ [ e( gO)] /

® SUSY Minkowski vacuum: moduli are stabilized

4 N

ARR <0, AR < 0; WR =90 = WU
"""""""""""""""""""""""""""""""""" DWRR|
RR _ Q t *
Q -, U. DAV #= 0
Ve = 0
\_ J
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Three types of solutions to satisfy 0 = D VR + UD WY and 0 = WRR + ReU WY

® SUSY AdS vacuum: moduli are (almost) stabilized

4 ™
ARR > 0, A? > 0; DWRR, =0 = DWY,
________________________________________________________________ T
ttR =142, ReU, = W
W
4 AQ
V. = =37 = — < 01
3 W TRecgpV s <O
® SUSY Minkowski vacuum: moduli are stabilized
4 N
ARR <0, AR < 0; WR =90 = WU
""""""""""""""""""""""""""""""" DWRR|
RR _ Q t *
« o, U. DAV %= 0
Ve = 0
o 4
® SUSY AdS vacua, but moduli ¢ and U are not fixed: non-stabilized point
RR RR
RN 11 () B L
D VQ(t) WQ(t)
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Example 2: SU(3)-structure manifold

1. Set erra = 0 = mis, prt = 0 = ¢'*, and single modulus t of &, (and U of ®_)

(X’
X0

2. Set a deformed prepotential: F =
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Example 2: SU(3)-structure manifold

1. Set erra = 0 = mis, prt = 0 = ¢'*, and single modulus t of &, (and U of ®_)

Xt 3 Xt n+3
(XO) +ZN”((XO))7L+1

2. Set a deformed prepotential: F =
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Example 2: SU(3)-structure manifold

1. Set egrra = 0 = min, prt =0 = ¢'*, and single modulus ¢t of @, (and U of ®_
RR -

Xt 3 Xt n+3
(XO) +ZN”((X0))n+1

n

2. Set a deformed prepotential: F =

Superpotential W = UWY with a simple setting N; # 0, N,, = 0:

DW? = —ep+ B(Zt__i_);__iip (600 + € t)
P o= 2Nt = NP 2N T+ 2N, )
4 2eo )
SUSY condition o= - ey Rell, =0
DWW = DyW =0 WL =ey, ImN; < 0
has a solution V. = _3eKWy? — 1 3 (eo)*

S ~ [Re(CGp)]? 16 (egp)2 ImN; )

Also heterotic string on SU (3)-structure manifolds with torsion which carries o’ corrections
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Summary

® Studied generalized geometries and their applications to string compactifications
® Obtained a powerful rule to discuss SUSY vacua: Discriminants

@ Exhibited that o corrections are included in certain configurations

Discussions

@ More generic configurations
® Gauge symmetries

® Understanding the physical interpretation of nongeometric fluxes
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