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History I

Soon after the appearance of Tomita-Takesaki theory
for the factors of type III defined by von Neumann,
Araki, Connes and Takesaki classified independently
them under the existance of periodic faithful normal
semifinite weights (71-72).
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History I

Soon after the appearance of Tomita-Takesaki theory
for the factors of type III defined by von Neumann,
Araki, Connes and Takesaki classified independently
them under the existance of periodic faithful normal
semifinite weights (71-72).

Takesaki succeeded to classify them completely by
using the great new idea, so-called
Takesaki Duality for W*-crossed products (72).

At the almost same time, he conjectured that the
duality also held for C*-crossed products .
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History II

Although his conjecture seemed to be similar to
W∗-cases at a glance, it really contained a subtle
problem comparing with Takesaki duality in
W∗-crossed products . Actually, one had to establish
a space free version by means of representations.
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Fortunately, I then had some good informations
from the paper of Zeller-Meier although the groups
treated there were Discrete , which was insufficient
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History II

Although his conjecture seemed to be similar to
W∗-cases at a glance, it really contained a subtle
problem comparing with Takesaki duality in
W∗-crossed products . Actually, one had to establish
a space free version by means of representations.

Fortunately, I then had some good informations
from the paper of Zeller-Meier although the groups
treated there were Discrete , which was insufficient
solving his conjecture.

I tried to generalize them to the case of
Locally compact cases, and combining them with

the preprint of Takesaki duality, I became to believe
that his conjecture was correct. MSI – p.3/23



History III

After almost 8 months, I thought to succeed solving
his conjecture affirmatively and handed my preprint
to him.
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History III

After almost 8 months, I thought to succeed solving
his conjecture affirmatively and handed my preprint
to him.

In a week or so, he found a big mistake in my
paper. He explained me in detail that the way I found
out was almost approaching to the ending, however
the adjoint map I used there worked incorrectly
reaching to the final stage. More precisely, the
representation I found never splitted into a tensor
product one by using the map cited above.
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History III

After almost 8 months, I thought to succeed solving
his conjecture affirmatively and handed my preprint
to him.

In a week or so, he found a big mistake in my
paper. He explained me in detail that the way I found
out was almost approaching to the ending, however
the adjoint map I used there worked incorrectly
reaching to the final stage. More precisely, the
representation I found never splitted into a tensor
product one by using the map cited above.

I checked repeatedly the part he mentioned, however
I had never reached the conclusion for a long time.
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History IV

After having many discussions with Prof.Takesaki,
he suddenly suggested me to consider the reverse
way from the final part. Namely, the method he
advised was to connect the representation I
constructed and a new comming one searched from
the tensor product that I expected.

MSI – p.5/23



History IV

After having many discussions with Prof.Takesaki,
he suddenly suggested me to consider the reverse
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History IV

After having many discussions with Prof.Takesaki,
he suddenly suggested me to consider the reverse
way from the final part. Namely, the method he
advised was to connect the representation I
constructed and a new comming one searched from
the tensor product that I expected.

I immediately followed his advice and executed
finding both appropriate representation and unitary,
and found them in a short time. Then I finally
conquered the most difficult part of his problem.

As soon as Prof.Takesaki checked the final version
of my preprint, I sent it to both C.R.Acad.Paris and
J.Func.Anal.,on which it was published (74,75).
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History V

A special remark is the following important fact:
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History V

A special remark is the following important fact:

After several months since I published it on
C.R.Acad.Paris, I received the Ph.D thesis from
M.Landstad who belonged to University of
Pennsylvania, in which the same result of the duality
for C*-crossed products was obtained.
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History V

A special remark is the following important fact:

After several months since I published it on
C.R.Acad.Paris, I received the Ph.D thesis from
M.Landstad who belonged to University of
Pennsylvania, in which the same result of the duality
for C*-crossed products was obtained.

This means that If I had been struggling with the big
mistake for half a year more, my present talk is
probably never happened.

MSI – p.6/23



Contents I

(Takesaki Conjecture): Let (A, G, α) be a
C*-dynamical system with G a locally compact
abelian group. Then there exists a dual
C*-dynamical system (A �α G, Ĝ, α̂) such that

(A �α G �α̂ Ĝ, G, ̂̂α) �
(A ⊗ K(L2(G)), G, α ⊗ Ad(λ)) as a C*-dynamical
system, where K(L2(G)) is the C*-algebra of all
compact operators on L2(G), and Ad(λ) is the
adjoint action of the left translation λ of G on L2(G).

MSI – p.7/23



Contents II

Let us review briefly how to define C*-crossed
product: let (A, G, α) be a C*-dynamical system
where A is a C*-algebra, G is a locally compact
unimodular group and α : G → Aut(A) is a
homomorphism with the property that
||αg(a) − a|| → 0 (g → e) for all a ∈ A.
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Contents II

Let us review briefly how to define C*-crossed
product: let (A, G, α) be a C*-dynamical system
where A is a C*-algebra, G is a locally compact
unimodular group and α : G → Aut(A) is a
homomorphism with the property that
||αg(a) − a|| → 0 (g → e) for all a ∈ A.

The C*-crosed product A �α G is defined as the
completion of the Banach *-algebra L1(G, A)
with: xy(g) =

∫
G x(h)αh(y(h−1g)) dh, x∗(g) =

αg(x(g−1)∗) , ||x||1 =
∫

G ||x(g)|| dg with respect to
the C*-norm ||x|| = supπ∈L1(G,A)||π(x)|| .
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Contents III

Let G be amenable as a topological group, namely
there exists a G-invariant mean on the C*-algebra
Cb(G) of all bounded continous complex valued
functions on G with sup norm, or the dual space Ĝ

of G is equal to its reduced one Ĝr as a topological
space. For example, abelian, compact, nilpotent, and
solvable groups are amenable, however the free
groups Fn, SL(n, Z) (n ≥ 2) are non amenable.
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Contents III

Let G be amenable as a topological group, namely
there exists a G-invariant mean on the C*-algebra
Cb(G) of all bounded continous complex valued
functions on G with sup norm, or the dual space Ĝ

of G is equal to its reduced one Ĝr as a topological
space. For example, abelian, compact, nilpotent, and
solvable groups are amenable, however the free
groups Fn, SL(n, Z) (n ≥ 2) are non amenable.

Discrete amenability is much stronger than
topological one: for instance, SO(n) (n ≥ 3) are
topologically amenable, but never discrete sense
because SO(n) ⊃ F2.
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Contents IV

Suppose G is amenable and A acts on a Hilbert
space H by a representation π, then so does A �α G
on the Hilbert space L2(G, H) by the induced
representation Ind π of π, which is precisely defined
by
(Ind π(x)ξ)(g) =

∫
G π(αg−1(x(h)))ξ(h−1g) dh

(x ∈ L1(G, A), g ∈ G, ξ ∈ L2(G, H)).
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Contents IV

Suppose G is amenable and A acts on a Hilbert
space H by a representation π, then so does A �α G
on the Hilbert space L2(G, H) by the induced
representation Ind π of π, which is precisely defined
by
(Ind π(x)ξ)(g) =

∫
G π(αg−1(x(h)))ξ(h−1g) dh

(x ∈ L1(G, A), g ∈ G, ξ ∈ L2(G, H)).

Ind π can be viewed as the integrated representation
π̄ × λ̄ of the covariant one (π̄, λ̄) of (A, G) with the
property that
λ̄g ◦ π̄(a) ◦ λg−1 = π̄ ◦ αg(a) (a ∈ A, g ∈ G),where
(π̄(a))ξ(g) = π ◦ αg−1ξ(g), λ̄hξ(g) = ξ(h−1g)
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Contents IV

Suppose G is amenable and A acts on a Hilbert
space H by a representation π, then so does A �α G
on the Hilbert space L2(G, H) by the induced
representation Ind π of π, which is precisely defined
by
(Ind π(x)ξ)(g) =

∫
G π(αg−1(x(h)))ξ(h−1g) dh

(x ∈ L1(G, A), g ∈ G, ξ ∈ L2(G, H)).

Ind π can be viewed as the integrated representation
π̄ × λ̄ of the covariant one (π̄, λ̄) of (A, G) with the
property that
λ̄g ◦ π̄(a) ◦ λg−1 = π̄ ◦ αg(a) (a ∈ A, g ∈ G),where
(π̄(a))ξ(g) = π ◦ αg−1ξ(g), λ̄hξ(g) = ξ(h−1g)

An important fact is that if π is faithful, so is Ind π.MSI – p.10/23



Contents V

We now assume that G is a locally compact abelian
group. Then we consider the the universal
representation π of A, which is faithfully acting on
the universal Hilbert space H . Then so is its induced
one Ind π on the Hilbert space L2(G, H).

MSI – p.11/23



Contents V

We now assume that G is a locally compact abelian
group. Then we consider the the universal
representation π of A, which is faithfully acting on
the universal Hilbert space H . Then so is its induced
one Ind π on the Hilbert space L2(G, H).

Let us consider a new action α̂ of the Pontryagin
dual group Ĝ of G on A �α G defined by

α̂p(x)(g) = p(g)x(g)

(x ∈ L1(G, A), g ∈ G, p ∈ Ĝ). It serves a new
C*-dynamical system (A �α G, Ĝ, α̂), which we
call the dual C*-dynamical system of (A, G, α). MSI – p.11/23



Contents VI

We then consider its C*-crossed product, namely
A �α G �α̂ Ĝ. Since Ind π is faithful on A �α G, so
is the second induced one Ind (Ind π) acting on the
Hilbert space L2(Ĝ, L2(G, H)), which is denoted by
π1.
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Contents VI

We then consider its C*-crossed product, namely
A �α G �α̂ Ĝ. Since Ind π is faithful on A �α G, so
is the second induced one Ind (Ind π) acting on the
Hilbert space L2(Ĝ, L2(G, H)), which is denoted by
π1.

We next construct another representation of the
C*-tensor product A ⊗ K(L2(G)) on the Hilbert
space H ⊗ L2(G × G) via the following process:
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Contents VII

let us take the translation action τ of G on the
C*-algebra C0(G) of all complex valued continuous
functions on G vanishing at infinity, which gives a
C*-dynamical system (C0(G), G, τ ). We take its
C*-crossed product C0(G) �τ G.
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Contents VII

let us take the translation action τ of G on the
C*-algebra C0(G) of all complex valued continuous
functions on G vanishing at infinity, which gives a
C*-dynamical system (C0(G), G, τ ). We take its
C*-crossed product C0(G) �τ G.

Then we can check that

Ind δe(C0(G) �τ G) = K(L2(G))

where δe is the Dirac measure on C0(G) at the
identity e of G.
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Contents VII

let us take the translation action τ of G on the
C*-algebra C0(G) of all complex valued continuous
functions on G vanishing at infinity, which gives a
C*-dynamical system (C0(G), G, τ ). We take its
C*-crossed product C0(G) �τ G.

Then we can check that

Ind δe(C0(G) �τ G) = K(L2(G))

where δe is the Dirac measure on C0(G) at the
identity e of G.

Actually since ⊕g∈G δe ◦ τg is faithful of C0(G) on
⊕g∈GC, so is Ind δe of C0(G) �τ G on L2(G). MSI – p.13/23



Contents VIII

Let us consider two C*-dynamical systems
(A ⊗ C0(G), G, α ⊗ τ ) and (A ⊗ C0(G), G, ι ⊗ τ ).
By taking the map:

Φ(x)(g) = αg(x(g−1h)), ( x ∈ A ⊗ C0(G) )

these C*-dynamical systems are equivalent, so that

(A ⊗ C0(G)) �α⊗τ G � (A ⊗ C0(G)) �ι⊗τ G

by the following isomorphism:

Φ̃(x)(g) = Φ(x(g)), ( x ∈ L1(G, A ⊗ C0(G) ) .
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Contents IX

We then consider another C*-dynamical system
(A ⊗ C∗(Ĝ), G, α ⊗ χ), where χ is the character
action of G on C∗(Ĝ) defined by

χg(f)(p) = p(g)f(g)

( f ∈ L1(Ĝ), g ∈ G, p ∈ Ĝ ) .
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Contents IX

We then consider another C*-dynamical system
(A ⊗ C∗(Ĝ), G, α ⊗ χ), where χ is the character
action of G on C∗(Ĝ) defined by

χg(f)(p) = p(g)f(g)

( f ∈ L1(Ĝ), g ∈ G, p ∈ Ĝ ) .

Then the two C*-dynamical systems
(A ⊗ C∗(Ĝ), G, α ⊗ χ), (A ⊗ C0(G), G, α ⊗ τ ) are
equivalent by the isomorphism F defined by

F = IdA ⊗ F ,
where F is the extended Fourier inverse
isomorphism from C∗(Ĝ) onto C0(G).
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Contents X

This implies that

(A ⊗ C∗(Ĝ)) �α⊗χ G � (A ⊗ C0(G)) �α⊗τ G

by the isomorphism F̃ defined by
F̃(x)(g) = F(x(g))

( x ∈ L1(G, A ⊗ C∗(Ĝ)), g ∈ G ).

MSI – p.16/23



Contents X

This implies that

(A ⊗ C∗(Ĝ)) �α⊗χ G � (A ⊗ C0(G)) �α⊗τ G

by the isomorphism F̃ defined by
F̃(x)(g) = F(x(g))

( x ∈ L1(G, A ⊗ C∗(Ĝ)), g ∈ G ).

We then identify (A ⊗ C∗(Ĝ)) �α⊗χ G with

A �ι Ĝ �β G,

where β is the action of G on A �ι Ĝ defined by
βg(x)(p) = p(g)αg(x(p))

( x ∈ L1(Ĝ, A), g ∈ G, p ∈ Ĝ ) .
MSI – p.16/23



Contents XI

We now study another double C*-crossed product
A �ι Ĝ �β G more precisely. As we have used
before, let us take the double induced representation
Ind(Ind π) of A �ι Ĝ �β G on the Hilbert space

L2(G, L2(Ĝ)), which we denote by π2.
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Contents XI

We now study another double C*-crossed product
A �ι Ĝ �β G more precisely. As we have used
before, let us take the double induced representation
Ind(Ind π) of A �ι Ĝ �β G on the Hilbert space

L2(G, L2(Ĝ)), which we denote by π2.

Fortunately, we can find a unitary U from
L2(Ĝ, L2(G, H)) onto L2(G, L2(Ĝ, H)) such that
π2(A �ι Ĝ �β G) is isomorphic to

π1(A �α G �α̂ Ĝ) under Ad(U). Actually, the
unitary U is gained by Uξ(g, p) = p(g)ξ(p, g) ,

( ξ ∈ L2(Ĝ × G, H), g ∈ G, p ∈ Ĝ ).
MSI – p.17/23



Contents XII

Finally, we obtain that

Π ◦ ̂̂α = (α ⊗ Ad(λ)) ◦ Π

where

Π = {π2 ◦ F̃ ◦ Φ̃ ◦ (IdA ⊗ Ind δe)}−1 ◦ Ad(U) ◦ π1 .
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Contents XII

Finally, we obtain that

Π ◦ ̂̂α = (α ⊗ Ad(λ)) ◦ Π

where

Π = {π2 ◦ F̃ ◦ Φ̃ ◦ (IdA ⊗ Ind δe)}−1 ◦ Ad(U) ◦ π1 .

Summing up the argument discussed above, we
conclude that Takesaki Conjecture for C*-crossed
products is affirmative .
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Contents XIII

The result had been generalized in the case of any
locally compact groups by Imai-T (78).
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Contents XIII

The result had been generalized in the case of any
locally compact groups by Imai-T (78).

The duality for twisted C∗-crossed products was
obtained by Quigg (86).

The case for F∗-flows by Elliott-Natsume-Nest (88).

The case for Hilbert C∗-modules with locally
compact abelian group actions by Kajiwara (00).

The case for twisted induced C∗-crossed products by
Bouwknegt-Hannabuss-Mathai (05,06).

The case for Hilbert C∗-modules with locally
compact group actions by Abadie (07).
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Contents XIV

In my second talk, two important applications will
be explained:
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In my second talk, two important applications will
be explained:

The first one is applied to describe the so-called
Thom Isomorphism for K-theory by Connes (81).

Similarly as its dual version, that for periodic cyclic
cohomology by Elliott-Natsume-Nest (88). They are
quite useful for Noncommutative Index Theory.
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Contents XIV

In my second talk, two important applications will
be explained:

The first one is applied to describe the so-called
Thom Isomorphism for K-theory by Connes (81).

Similarly as its dual version, that for periodic cyclic
cohomology by Elliott-Natsume-Nest (88). They are
quite useful for Noncommutative Index Theory.

In connection with Thom Isomorphism, we explain
an equivalence relation between K-theory of twisted
group C∗-algebras and twisted K-theory of
K(π,1)-spaces under certain conditions due to

Packer-Raeburn (89,90),
Carey-Hannabuss-Mathai-McCann (98). MSI – p.20/23



Contents XV

The second one is applied to describe T-Duality in
type II superstring theory due to
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Contents XV

The second one is applied to describe T-Duality in
type II superstring theory due to

Bouwknegt-Evslin-Mahtai (03,04),
Bouwknegt-Hannabuss-Mathai (04,05),
Mathai-Rosenberg (05,06),
Brodzki-Mathai-Rosenberg-Szabo (07,08),
Szabo (08).
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Applications I

In what follows, we explain two important
applications for the duality of C*-crossed products.
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Applications I

In what follows, we explain two important
applications for the duality of C*-crossed products.

Let me remind all of you what this duality means
once again:
Let (A, G, α) be a C*-dynamical system with G a
locally compact abelian group. Then there exists a
dual C*-dynamical system (A �α G, Ĝ, α̂) such that
the double dual C*-dynamical system

(A �α G �α̂ Ĝ, G, ̂̂α) � the tensor one
(A ⊗ K(L2(G)), G, α ⊗ Ad(λ))
where K(L2(G)) is the C*-algebra of all compact
operators on L2(G), and Ad(λ) is the adjoint action
of the left translation λ of G on L2(G). MSI – p.2/20



Applications II

One of the most important applications is perhaps
Thom isomorphism in K-theory due to Connes

(81), which precisely means that: let (A, R, α) be a
C*-flow, and denote by Kj(A) the Kj-group of
A (j=0,1). Then he deduced using the duality for
C*-crossed product that

Kj(A �α R) � Kj+1(A) (mod2)
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Applications II

One of the most important applications is perhaps
Thom isomorphism in K-theory due to Connes

(81), which precisely means that: let (A, R, α) be a
C*-flow, and denote by Kj(A) the Kj-group of
A (j=0,1). Then he deduced using the duality for
C*-crossed product that

Kj(A �α R) � Kj+1(A) (mod2)

Thom Isomorphism in Twisted K-theory also
seems to be existed by using Quigg (resp.
Bouwknegt-Hannabuss-Mathai)’s duality results for
twisted (resp.induced) C∗-crossed products.
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Applications III

Using F ∗-flows, the dual version of Connes’Thom
isomorphism was proved by Elliott-Natsume-Nest.
In other words, let (A, R, α) be a F ∗-flow. Then the
following result holds:
Hev

λ (A �α R) � Hod
λ (A) , Hod

λ (A �α R) � Hev
λ (A)

where Hλ means the periodic cyclic cohomology
(88).
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Applications III

Using F ∗-flows, the dual version of Connes’Thom
isomorphism was proved by Elliott-Natsume-Nest.
In other words, let (A, R, α) be a F ∗-flow. Then the
following result holds:
Hev

λ (A �α R) � Hod
λ (A) , Hod

λ (A �α R) � Hev
λ (A)

where Hλ means the periodic cyclic cohomology
(88).

As their corollary, let G be a simply connected
solvable Lie group (ex.G = H2n+1

R
, M2n+1

R
) and

(A, G, α) be a C∗(F ∗)-dynamical system. Then
Ki(H

j
λ)-theory of A �α G is isomorphic to

Ki+dimG(Hj+dimG
λ )-theory of A (mod 2), where

i = 0, 1, j = ev (od) respectively. MSI – p.4/20



Applications IV

We could state about it a little more than solvable
cases. Namely, let
G = SO0(n, 1), SU(n, 1) (n ≥ 1) be the
generalized Lorenz groups which are non amenable.
But it is so-called K-amenable originally due to
Cuntz (83) in discrete group cases, which was
generalized to Lie group cases by
Carey-Hannabuss-Mathai-McCann (98): Let G be a
connected Lie group and K be its maximal compact
subgroup such that G/K has a G-invariant spinc

structure, which induces the G-invariant Dirac
operator ∂ on the Hibert space H = L2(G/K, S) of
all L2-sections of the Z2-graded spinor bundles S
over G/K. MSI – p.5/20



Applications V

Let F = ∂(1 + ∂2)−1/2 be the pseudo-differential
operator of order 0 acting on H , and M be the
canonical representation of C0(G/K) on H defined
by Mfξ = fξ. Then the triple (H, M, F ) induces an
element αG ∈ KKG(C0(G/K), C), which is called
the Dirac element associated with G/K.
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Applications V

Let F = ∂(1 + ∂2)−1/2 be the pseudo-differential
operator of order 0 acting on H , and M be the
canonical representation of C0(G/K) on H defined
by Mfξ = fξ. Then the triple (H, M, F ) induces an
element αG ∈ KKG(C0(G/K), C), which is called
the Dirac element associated with G/K.

If G is semisimple, then there exists another
canonical element βG ∈ KKG(C, C0(G/K))
with the property that
αG⊗C βG = 1C0(G/K) ∈ KKG(C0(G/K), C0(G/K))

βG ⊗C0(G/K) αG = γG ∈ KKG(C, C) ,
which is called the Mishchenko element associated
with G/K. MSI – p.6/20



Applications VI

Since G is semisimple, then the Killing form on G
defines a G-invariant Riemannian metric of
non-positive sectional curvature on G/K. Let
E = C0(G/K, S∗) be the G-invariant
C0(G/K)-module consisting of all continuous
sections of the dual spinor bundles S∗ vanishing at
infinity, and F be a bounded operator on E defined
as Fξ(x) = c(v(x, x0))ξ(x), where
v(x, x0) ∈ Tx(G/K) is the unit vector which is
tangent to the unique geodesic from x0 to x and c
means the Clifford multiplication. Then v(x, x0) is
well defined outside a small neighborhood of x0 can
be extended continuously to all of G/K in any way.
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Applications VII

Then one sees that the triple (E , id, F ) induces the
element βG ∈ KK(C, C0(G/K)) with the property
cited before.
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Applications VII

Then one sees that the triple (E , id, F ) induces the
element βG ∈ KK(C, C0(G/K)) with the property
cited before.

Kasparov (80) showed that if G is amenable, then
γG = 1. Therefore we define that a Lie goup G is
K-amenable if γG = 1.
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Applications VII

Then one sees that the triple (E , id, F ) induces the
element βG ∈ KK(C, C0(G/K)) with the property
cited before.

Kasparov (80) showed that if G is amenable, then
γG = 1. Therefore we define that a Lie goup G is
K-amenable if γG = 1.

(Kasparov 80) SO0(n, 1) , and
(Julg-Kasparov 95) SU(n, 1) are K-amenable
(n≥ 1) .
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Applications VIII

(Carey-Hannabuss-Mathai-McCann 98) Let G be a
K-amenable Lie group and K be its maximal
compact subgroup. Suppose Γ is a lattice in G, then
for any multiplier σ ∈ H2(Γ, U(1)),

K∗(C∗(Γ, σ)) � K
∗+dim(G/K)
δ(Bσ) (Γ\G/K)

where C∗(Γ, σ) is the σ-twisted group C∗-algebra of
Γ, δ(Bσ) ∈ H3(Γ\G/K) denotes the Dixmier-
Douady invariant of a continuous trace C∗-algebra
Bσ, and Kδ(Bσ)(Γ\G/K) means the δ(Bσ)-twisted
K-theory of Γ\G/K .
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Applications VIV

We finally apply it to the case of the fundamental
groups Γg of compact Riemann surfaces Σg with
genus g ≥ 2. Let G = SO0(2, 1), K = SO(2) and
Γg ⊂ G. Then it follows that
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Applications VIV

We finally apply it to the case of the fundamental
groups Γg of compact Riemann surfaces Σg with
genus g ≥ 2. Let G = SO0(2, 1), K = SO(2) and
Γg ⊂ G. Then it follows that

Given any σ ∈ H2(Γg, U(1)) , we have that
K0(C

∗
r (Γg, σ)) � K0(Σg) � Z

2 , and
K1(C

∗
r (Γg, σ)) � K1(Σg) � Z

2g

where C∗
r (Γg, σ) means the reduced σ-twisted group

C∗-algebra of Γg

(Carey-Hannabuss-Mathai-McCann 98, Natsume-
Nest 99).
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Applications X

We next apply the duality for C∗-crossed products
(resp. twisted ones) to a new description of type II
string T-Duality without (resp. with) NS H-flux.
T-duality is actually a symmetry of string theory
relating small and large distances, which is a
generalization of the R → 1/R invariance of string
theory compactified on a circle of radius R. In the
case of superstring theory, type IIA-string theory can
be shifted to type IIB-one and vice versa by
T-duality. Moreover, type II and heterotic theories
also mutually change under T-duality.
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Applications X

We next apply the duality for C∗-crossed products
(resp. twisted ones) to a new description of type II
string T-Duality without (resp. with) NS H-flux.
T-duality is actually a symmetry of string theory
relating small and large distances, which is a
generalization of the R → 1/R invariance of string
theory compactified on a circle of radius R. In the
case of superstring theory, type IIA-string theory can
be shifted to type IIB-one and vice versa by
T-duality. Moreover, type II and heterotic theories
also mutually change under T-duality.

(Case I, Absence of NS H-flux): Let X = M × T
n

be a spacetime without a background H-flux.
MSI – p.11/20



Applications XI

In this case, the T-dual space X̂ is nothig but
X̂ = M × T̂

n, where T̂
n = (Rn)∗/Λ∗ is the dual

torus to T
n = R

n/Λ where Λ is a lattice of maximal
rank in R

n and Λ∗ its dual lattice.
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Applications XI

In this case, the T-dual space X̂ is nothig but
X̂ = M × T̂

n, where T̂
n = (Rn)∗/Λ∗ is the dual

torus to T
n = R

n/Λ where Λ is a lattice of maximal
rank in R

n and Λ∗ its dual lattice.

This situation is interpreted algebraically as follows:
Let us take the R

n-action ϕ on X by
ϕ|M = id, ϕ|Tn=translations. Then
X̂ = Spec(C0(X) �ϕ R

n) , because C0(X) �ϕ R
n is

Morita equivalent to C0(X̂) .
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Applications XI

In this case, the T-dual space X̂ is nothig but
X̂ = M × T̂

n, where T̂
n = (Rn)∗/Λ∗ is the dual

torus to T
n = R

n/Λ where Λ is a lattice of maximal
rank in R

n and Λ∗ its dual lattice.

This situation is interpreted algebraically as follows:
Let us take the R

n-action ϕ on X by
ϕ|M = id, ϕ|Tn=translations. Then
X̂ = Spec(C0(X) �ϕ R

n) , because C0(X) �ϕ R
n is

Morita equivalent to C0(X̂) .

Using the duality for C∗-crossed products, one

knows that ̂̂
X = X , which implies that T-duality

map:X → X̂ is invertible in KK(X, X̂). MSI – p.12/20



Applications XII

Let me explain more precisely how T-duality maps
are interpreted in KK(X, X̂) as a topological
version of the Fourier-Mukai transform in coherent
sheaves of derived categories over abelian varietiesin
what follows:
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Applications XII

Let me explain more precisely how T-duality maps
are interpreted in KK(X, X̂) as a topological
version of the Fourier-Mukai transform in coherent
sheaves of derived categories over abelian varietiesin
what follows:

Let P0 be the Poincaré line bundle over T
n × T̂

n,
namely the unique line bundle with the property that
P0|Tn×{t̂} ∈ Pic0(Tn) is the flat line bundle over T

n

for all t̂ ∈ T̂
n and P0|{0}×T̂n = T̂

n × C.
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Applications XII

Let me explain more precisely how T-duality maps
are interpreted in KK(X, X̂) as a topological
version of the Fourier-Mukai transform in coherent
sheaves of derived categories over abelian varietiesin
what follows:

Let P0 be the Poincaré line bundle over T
n × T̂

n,
namely the unique line bundle with the property that
P0|Tn×{t̂} ∈ Pic0(Tn) is the flat line bundle over T

n

for all t̂ ∈ T̂
n and P0|{0}×T̂n = T̂

n × C.

Let P = p∗(P0) be the pull back bundle of P0 to
M × T

n × T̂
n, where p is the projection from

M × T
n × T̂

n to T
n × T̂

n. MSI – p.13/20



Applications XIII

Then the T-duality isomorphsm T! from K∗(X) to
K∗+n(X̂) is defined by

T!(E) = p2!(p
∗
1(E) ⊗X×T̂n P)

for all E ∈ K∗(X), where p1, p2 are the projection
from X × T̂

n to X, X̂ respectively, p∗1(E) is the
pullback bundle of E to X × T̂

n, and p2! is the
pushforward map from K∗(X × T̂

n) to K∗(X̂)
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Applications XIII

Then the T-duality isomorphsm T! from K∗(X) to
K∗+n(X̂) is defined by

T!(E) = p2!(p
∗
1(E) ⊗X×T̂n P)

for all E ∈ K∗(X), where p1, p2 are the projection
from X × T̂

n to X, X̂ respectively, p∗1(E) is the
pullback bundle of E to X × T̂

n, and p2! is the
pushforward map from K∗(X × T̂

n) to K∗(X̂)

Taking the transpose monomorphism p∗1 of p1 from
C0(X) into C0(X × T̂

n), one easily has a
KK-elements p∗1 ∈ KK∗+n(X, X × T̂

n). Since p2 is
K-oriented, it follows from Karoubi-Kasparov that
p2! ∈ KK∗(X × T̂

n, X̂). MSI – p.14/20



Applications XIV

Since the pullback bundle P) of the Poincaré line
bundle P0 to X × T̂

n can be considered as in
End(K∗(X × T̂

n)) by taking the Kasparov product,
which is nothig more than KK∗(X × T̂

n, X × T̂
n)

up to equivalence relations.
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Applications XIV

Since the pullback bundle P) of the Poincaré line
bundle P0 to X × T̂

n can be considered as in
End(K∗(X × T̂

n)) by taking the Kasparov product,
which is nothig more than KK∗(X × T̂

n, X × T̂
n)

up to equivalence relations.

We then identify the T-duality map T! with

T! = p∗1 ⊗X×T̂n ⊗P ⊗X×T̂n p2! ∈ KK∗+n(X, X̂) ,

(mod 2) , which is invertible with respect to the
Kasparov product
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Applications XV

((Case II, Presence of NS H-flux): Let us take
T → E

π→ M a principal T-bundle over a smooth
manifold M with a H-flux [H ] ∈ H3(E, Z). Then
there exists a unique bundle K → E → E whose
Dixmier-Douady invariant δ(E) = [H ].So its
continuous trace C∗-algebra CT(E , [H ]) satisfies
δ(CT(E , [H ])) = [H ], Spec(CT(E, [H ])) = E.
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Applications XV

((Case II, Presence of NS H-flux): Let us take
T → E

π→ M a principal T-bundle over a smooth
manifold M with a H-flux [H ] ∈ H3(E, Z). Then
there exists a unique bundle K → E → E whose
Dixmier-Douady invariant δ(E) = [H ].So its
continuous trace C∗-algebra CT(E , [H ]) satisfies
δ(CT(E , [H ])) = [H ], Spec(CT(E, [H ])) = E.

Let Ê be a T-dual of E, namely a principal T̂ -bundle

over M : T̂ → Ê
π̂→ M such that its first Chern

class c1(Ê) = π!([H ]), where π! is the pushforward
map: H3(E, Z) → H2(M, Z).
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Applications XVI

Then one can defines a T-dual H-flux
[Ĥ] ∈ H3(Ê, Z) satisfying c1(E) = π̂!(Ĥ) and
[H ] = [Ĥ] ∈ H3(E ×M Ê, Z), where E ×M Ê is the
fibered product of E and Ê. Then it also induces the
continuous trace C∗-algebra CT(Ê , [Ĥ]) with the
same property as stated before.
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Applications XVI

Then one can defines a T-dual H-flux
[Ĥ] ∈ H3(Ê, Z) satisfying c1(E) = π̂!(Ĥ) and
[H ] = [Ĥ] ∈ H3(E ×M Ê, Z), where E ×M Ê is the
fibered product of E and Ê. Then it also induces the
continuous trace C∗-algebra CT(Ê , [Ĥ]) with the
same property as stated before.

Since the fibers of E are T
1, there exists a

C∗-dynamical system (CT(E , [H ]), R, ϕ∗),
where ϕ is the canonical action of R on E.
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Applications XVI

Then one can defines a T-dual H-flux
[Ĥ] ∈ H3(Ê, Z) satisfying c1(E) = π̂!(Ĥ) and
[H ] = [Ĥ] ∈ H3(E ×M Ê, Z), where E ×M Ê is the
fibered product of E and Ê. Then it also induces the
continuous trace C∗-algebra CT(Ê , [Ĥ]) with the
same property as stated before.

Since the fibers of E are T
1, there exists a

C∗-dynamical system (CT(E , [H ]), R, ϕ∗),
where ϕ is the canonical action of R on E.

Then its C∗-crossed product CT(E , [H ]) �ϕ∗ R is

Morita equivarent to CT(Ê , [Ĥ]), which imples that
Ê = Spec(CT(E, [H ]) �ϕ∗ R).

MSI – p.17/20



Applications XVI

By using again the duality for C∗-crossed products,

one deduces that ̂̂
E = E under this situation.
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Applications XVI

By using again the duality for C∗-crossed products,

one deduces that ̂̂
E = E under this situation.

The T-dual mapping T! : E → Ê is also obtained
as an invertible element of
KK1(CT(E , [H ]), CT(Ê , [Ĥ])) by passing through a
noncommutative Poincaré projective module over
CT(E ×M Ê).
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Applications XVI

By using again the duality for C∗-crossed products,

one deduces that ̂̂
E = E under this situation.

The T-dual mapping T! : E → Ê is also obtained
as an invertible element of
KK1(CT(E , [H ]), CT(Ê , [Ĥ])) by passing through a
noncommutative Poincaré projective module over
CT(E ×M Ê).

What happens the T-duality phenomena in the case
of T

n-bundles for n ≥ 2 ?
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Applications XVI

In these cases, quite difficult situation might be
occurred. For instance, if [H ]|Ex = 0 for all x ∈ M ,
then the R

n-action ϕ on E can lift to E , which
induces an action ϕ∗ on CT(E , [H ]). Then the
T-dual Ê of E can be defined by
Spec(CT(E, [H ]) �ϕ∗ R

n), which is no longer of
continuous trace classes. Actually, they are of
continuous trace class if and only if
[x ∈ M → [H ]|Ex] = 0 ∈ H1(M, H2(Tn, Z)).
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Applications XVI

In these cases, quite difficult situation might be
occurred. For instance, if [H ]|Ex = 0 for all x ∈ M ,
then the R

n-action ϕ on E can lift to E , which
induces an action ϕ∗ on CT(E , [H ]). Then the
T-dual Ê of E can be defined by
Spec(CT(E, [H ]) �ϕ∗ R

n), which is no longer of
continuous trace classes. Actually, they are of
continuous trace class if and only if
[x ∈ M → [H ]|Ex] = 0 ∈ H1(M, H2(Tn, Z)).

In general cases, CT(E , [H ]) �ϕ∗ R
n) may be

viewed as the continuous sections of a continuous
field of stable noncommutative n-tori on M .
(Brodzki-Mathai-Rosenberg-Szabo 08).
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