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Abstract

The development of techniques for manipulation of quantum in-
formation has opened the door to a variety of protocols for accom-
plishing unprecedented tasks. In particular, a new protocol of quan-
tum teleportation was proposed in 2008 to achieve e¤ective energy
transportation simply via local operations and classical communica-
tion � without breaking any known physical laws. This is achieved
by extracting zero-point energy of entangled many-body systems by
local operations dependent on information obtained by a distant mea-
surement. The concept is reviewed from an introductory viewpoint
herein.



1 Introduction

Together with spacetime, matter and information constitute the great
building blocks of the Universe. Matter is generally known to comprise
the elementary particles such as electrons and photons. But more precisely
speaking, the concept encompasses all conserved physical quantities such as
energy and electric charge carried by local excitations of elementary-particle
�elds. Information, however, represents the quantum information carried by
matter. All quantum information is consolidated by the quantum state of
the �elds. A signi�cant essential property of matter is its sameness at a very
deep bottom. For example, the properties of an electron at one position are
indistinguishable from those of another electron at a di¤erent position: they
have the same mass, the same spin, and the same electric charge. Quantum
mechanics does not distinguish between two particles corresponding to the
same �eld. Then from whence cometh the distinguishing characteristics of
individuals and the objects surrounding us? They stem from the full in-
formation imprinted on common matter, called the quantum �eld, that is,
the quantum state. In 1982, Wootters and Zurek discovered a remarkable
theorem about quantum states [1]. Their theorem shows that general quan-
tum states prohibit their cloning. In contrast to classical information, we
cannot make indistinguishable copies of quantum information. In this sense,
quantum information is one of the most profound concepts about identity.
Taking into account the above consideration, it is possible to argue that

transportation of a quantum state is equivalent to transportation of an ob-
ject itself with individual characteristics. In quantum mechanics, the trans-
portation of quantum states can be achieved simply by local operations and
classical communication (LOCC for short). This protocol was proposed in
1993 and named quantum teleportation [2]. Why is the protocol called �tele-
portation�? To illustrate this reason concretely, let us consider the protocol
with qubits. Alice and Bob stay at di¤erent positions and share a Bell pair
of two qubits A and B in a state

jE0iAB =
1p
2
(j+iAj+iB + j�iAj�iB) ;

where j+i (j�i) is the up (down) state of the third Pauli operator �3(=
j+ih+j � j�ih�j). Alice also has another qubit A0 in a unknown state j i.
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The state of these three qubits can be calculated as

j iA0 
 jE0iAB =
1

2

3X
�=0

jE�iA0A 
 ��Bj iB; (1)

where the orthogonal Bell states jE�iA0A are given by ��A0jE0iA0A, and ��A0 (��B)
is the Pauli operator �� for A0 (B) with its 0-th component �0 = I. At time
t = tm, Alice performs a Bell measurement to identify which jE�iA0A is real-
ized for the composite system of A0 and A. The output is two-bit information
of �(= 0; 1; 2; 3). Each emergence probability of � is the same and equal to
1=4. Because of so-called wavefunction collapse in quantum measurement,
the system in the state j iA0 
jE0iAB jumps instantaneously into a di¤erent
state jE�iA0A 
 ��Bj iB corresponding to the measurement result �. Very
surprisingly, the state of B becomes a pure state ��j i and acquires non-
trivial dependence on the input state j i. This means that B suddenly gets
information about j i at the moment of a distant measurement by Alice.
In this sense, the quantum information is �teleported�from Alice to Bob at
t = tm. The instantaneous state change at t = tm is depicted in �gure 1.

Figure 1: Instantaneous state change after lo cal m easurem ent by A lice in the conventional quantum telep ortation

proto col w ith qubits.

After the measurement, Alice announces the result � to Bob via a classical
channel such as a telephone. Though the post-measurement state ��j i of
B is di¤erent from the original state j i, Bob can transform it to the correct
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one by locally performing a unitary operation ��1� on B at the arrival time
t = top of the information about �. Figure 2 presents a spacetime diagram
of the protocol.

Figure 2: Spacetim e diagram of quantum telep ortation w ith qubits.

In order to avoid possible misunderstanding of the concept of teleportation
in physics, a comment must be added here: Bob only knows which state of
��j i (� = 0 � 3) is realized for B after receiving information about the
measurement from Alice. The speed of this classical communication between
them never exceeds the speed of light and, therefore, causality is strictly
retained.
The protocol of quantum teleportation [2] is really interesting. However,

it is not su¢ cient to teleport energy by itself. Transfer of an excited state to
a distant point requires preparation in advance of the same amount of energy
of the state at the point. If we do not have enough energy around the distant
point, the protocol never works. For example, let us imagine that Alice sends
to Bob the spin-up state of �3 of a qubit in an external uniform magnetic
�eld parallel to the z axis. For the teleportation, they must share two qubits
in a Bell state. The Hamiltonian of each qubit is given by Hb = b�3 with a
positive constant b. Note that, in the Bell state, Bob�s qubit has zero energy
on average. After the state teleportation, the energy of Bob�s qubit increases
to b on average because the teleported state is the up state. Because Bob�s
operation in the protocol is local, it is clear that b of the averaged energy
must be provided by an external operation device of Bob with a battery, for
instance, to drive it. During one round of the protocol, the energy of the
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battery decreases by b on average. If Bob does not have energy source like
this battery, the up-state teleportation does not succeed. On the other hand,
if the down state is teleported to Bob, Bob�s qubit loses b of energy on average
during his operation. Then the operation device receives b of the averaged
energy as a work done by his qubit. Thus the down-state teleportation
may be accomplished even if Bob does not have external energy sources to
drive the operation device. However, it should be noticed that the averaged
energy gain b was originally available for Bob without using the teleportation.
Before the operation, Bob�s qubit was already excited in a Bell state storing b
of energy, on average, larger than that of the spin-down ground state. Bob�s
qubit merely has disgorged the surplus energy due to the transition into
the ground state. Therefore, in this protocol, available energy for Bob moves
around the region of Bob without any increase of its total amount. No energy
is teleported in this case. Then do the known laws of physics truly allow
energy teleportation? Can we teleport an object with energy to a zero-energy
local-vacuum region? Amazingly, the answer is yes� in principle. Energy
can be e¤ectively transported simply using local operations and classical
communication, just like in the usual quantum teleportation protocol. In
quantum mechanics, we can generate quantum states containing a spatial
region with negative energy density of quantum �elds [3]. Thus, even if
we have zero energy in a region where an object is going to be teleported,
its energy can be extracted from the vacuum �uctuation of quantum �elds,
generating negative energy density around there. This can be attained by
using a local squeezing operation dependent on the result of a measurement
at the starting point of the teleportation. Of course, local energy conservation
and all the other physical laws are not violated in the energy teleportation.
The protocols, called quantum energy teleportation (QET for short), were
�rst proposed by this author in 2008. QET can be implemented, at least
theoretically, to various physical systems, including spin chains [4]-[6], cold
trapped ions [7], harmonic chains [8], and quantum �elds [9]-[11]. Besides,
it has been recently presented that QET would be experimentally veri�ed
by using quantum Hall edge currents [12]. Herein, we reviewed the QET
protocols from an introductory viewpoint.
The QET mechanism has various links to other research �elds in physics.

First of all, future QET technology is expected to achieve rapid energy dis-
tribution without thermal decoherence inside quantum devices. Because it is
not energy but classical information that is sent to the distant point, no heat
is generated in the energy transport channel during the short time period
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of QET protocols. This aspect will assist in the development of quantum
computers. QET also has a close relation to a local-cooling problem, as is
explained in section 4. A measurement on a subsystem of a ground-state
many-body system often breaks entanglement among the subsystems. This
measurement process is accompanied by energy injection to the system be-
cause the post-measurement state is not the ground state but instead an
excited state. Here we are able to pose an interesting question: Soon af-
ter the energy injection, is it possible to extract all the injected energy using
only local operations on the measured subsystem? The answer is no, because,
from information theory, residual energy is unavoidable for this local-cooling
process [4]. The residual energy is lower bounded by the total amount of
energy that can be teleported to other subsystems by using the measure-
ment information. The quantum local cooling and QET expose a new aspect
of quantum Maxwell�s demon [13], who �watches�quantum �uctuations in
the ground state. The amount of teleported energy depends nontrivially
on entanglement in the ground state of a many-body system. Hence, QET
analyses are also expected to shed new light on complicated entanglement in
condensed matter physics and to deepen our understanding of phase transi-
tion at zero temperature, which has been recently discussed using the entan-
glement [14].

Figure 3: L inks b etween QET and various research �elds are schematica lly summarized .

Moreover, QET provides a new method extracting energy from black holes
[11]: Outside a black hole, we perform a measurement of quantum �elds and
obtain information about the quantum �uctuation. Then positive-energy
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wave packets of the �elds are generated during the measurement and fall into
the black hole. Even after absorption of the wave packets by the black hole,
we can retrieve a part of the absorbed energy outside the horizon by using
QET. This energy extraction yields a decrease in the horizon area, which is
proportional to the entropy of the black hole. However, if we accidentally lose
the measurement information, we cannot extract energy anymore. The black-
hole entropy is unable to decrease. Therefore, the obtained measurement
information has a very close connection with the black hole entropy. This
line of argument is expected to lead to further understanding of the origin
of black hole entropy, which is often discussed in string theory [15]. Figure
3 presents a schematic summary of the links between QET and these other
�elds.
The present review is organized as follows: Section 2 presents an ele-

mentary description of the QET mechanism to allow the reader to capture
the essence of the concept. Section 3 then introduces the most simple ex-
ample of QET. In section 4, the general theory of QET is constructed for
one-dimensional discrete chain models. In section 5, QET with a relativis-
tic quantum �eld in one dimension is analyzed. The summary and some
comments are provided in the last section.

2 Capturing the Essence of QET Mechanism

In this section, an elementary intuitive explanation of QET is presented
to allow the reader to capture the essence of the mechanism. More rigorous
analyses follow in the later sections. From an operational viewpoint, QET
appears to be a kind of scienti�c magic trick. Let us �rst imagine a magic
trick using two separate empty boxes A and B (�gure 4) performed by Alice
and Bob. Alice injects some amount of energy to A. Then a secret trick begins
to work inside A (�gure 5). After a brief while, a magic spell, abracadabra,
which is a bit number (0 or 1) in this case, is outputted from A. Then Alice
announces this information to Bob in front of B (�gure 6) and Bob inputs
the abracadabra to B. B begins some internal process and �nally disgorges
energy, even though B contained nothing at �rst (�gure 7).
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Figure 4: Empty boxes A and B for the QET magic trick .

F igure 5: F irst step of the QET magic trick . Som e energy is inputted into the empty box A .
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Figure 6: Second step of the QET magic trick , the abracadabra sp ell, which is a sequence of 0�s and 1�s, is outputted

from A . Then A lice announces it to Bob who is in front of B .

F igure 7: Third step of the QET magic trick . Bob inputs the abracadabra sp ell to B , which then b egins to undergo an

internal pro cess that �nally d isgorges energy, even though B contained noth ing at �rst.

Certainly this looks like energy teleportation. QET is able to achieve this
magic using quantum systems.
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Figure 8: Noth ing in quantum theory m eans the ground state w ith nonvanish ing quantum �uctuation . This is the key

to the QET magic trick .

Then what is the point of this QET magic? The point is related to a ques-
tion: What is nothing? In quantum theory, nothing means the ground state
of the system, that is, the eigenstate of total Hamiltonian corresponding to
the minimum eigenvalue. For quantum �elds in particular, nothing means
the vacuum state. It is a very surprising fact of quantum mechanics that non-
vanishing zero-point �uctuations exist even in the vacuum state as nothing
(�gure 8).
What is zero-point �uctuation? In classical mechanics, a physical system

is completely frozen with no motion possible in its minimum energy state.
For example, let us consider a harmonic oscillator composed of a pendulous
spring attached to a ball of mass m (�gure 9).
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Figure 9: Illustration of a harmonic oscillator composed of a p endulous spring attached to a ball. In classica l theory, the

ball is at rest in the m in imum energy state.

Assuming that the spring force at a position X is given by F = �m!2X
with angular frequency ! of simple harmonic oscillation, its Hamiltonian is
given by

H =
1

2m
P 2 +

1

2
m!2X2:

In classical theory, both the position X and momentum P of the ball take
de�nite values. In �gure 9, the ball is at rest at position X = 0 and mo-
mentum P = 0 in the minimum energy state. However, in quantum theory,
position and momentum cannot simultaneously be �xed to arbitrary preci-
sion even in the ground state according to Heisenberg�s uncertainty principle:
�X�P � ~=2. Here, �X (�P ) is the quantum uncertainty in the position
(momentum) of the ball. Zero-point �uctuation is the random motion in-
duced by this quantum uncertainty. The situation is depicted in �gure 10.
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Figure 10: Zero-p oint �uctuation as random motion induced by the quantum uncerta inty relation for the harmonic

oscillator.

The minimum energy Eg can be roughly estimated by minimization of

Eg =
1

2m
�P 2 +

1

2
m!2�X2

with �X�P = ~=2. This yields the following estimation:

Eg =
1

2
~!: (2)

It is well known that rigorous derivation of the ground-state energy also
gives the same result in Eq. (2). The ground-state energy is called the
zero-point energy. This simple example exposes that zero-point �uctuation is
capable of carrying nonzero energy. And it is not only the harmonic oscillator
but also other general interacting many-body systems that have zero-point
�uctuation with nonvanishing energy in the ground state. In �gure 11, zero-
point �uctuation of coupled harmonic oscillators is schematically depicted as
an example.
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Figure 11: Zero-p oint �uctuation of coupled harmonic oscillators is schematica lly dep icted . Each subsystem �uctuates

w ith nonzero energy density even in the ground state.

Each subsystem is �uctuating with nonzero energy density in the ground
state.

Figure 12: Zero-p oint �uctuation of a b oson �eld in one d im ension is schematica lly dep icted . The vertica l line implies

amplitude of (coarse-gra ined) �eld �uctuation . The horizontal line describ es spatia l co ord inate x . M athematica l

description of the quantum �uctuation is a sup erp osition of various con�guration states. This situation is simpli�ed in

the �gure and only two di¤erent con�gurations of the �uctuation are exh ib ited by red and blue broken lines. They

�uctuate at a typ ica l amplitude order �xed by the quantum uncerta inty relation .

Of course, quantum �elds also have zero-point �uctuation in the vacuum
state. In this case, the �uctuation is also called vacuum �uctuation. In
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�gure 12, zero-point �uctuation of a boson �eld in one dimension is schemat-
ically depicted. The vertical line implies amplitude of (coarse-grained) �eld
�uctuation. The horizontal line describes the spatial coordinate x. The
mathematical description of the quantum �uctuation is a superposition of
various con�guration states. This situation is simpli�ed in �gure 12 and only
two di¤erent con�gurations of the �uctuation are exhibited by the red and
blue broken lines. They are �uctuating with a typical amplitude order �xed
by the quantum uncertainty relation. In later discussions, let us shift the
origin of energy by subtracting the zero-point energy Eg from original energy
values so as to make the value of the ground state zero:

E 0 = E � Eg:

Such a shift is always allowed without changing physics as long as we do not
take into account general relativity. This is because it is not the absolute
value but the di¤erence in energies of two states that is physically observ-
able. Therefore, the total energy takes nonnegative values. Regardless of
this nonnegativity, quantum theory has a very amazing feature that energy
density can take negative values [3].

Figure 13: Illustration of em ergence of negative energy density. In the upp er part of the �gure, a typ ica l situation of

lo cal squeezing of the �uctuation is schematica lly dep icted . The part surrounded by an ellipse shows the region of

suppressed �uctuation w ith average energy density smaller than that of the vacuum state. In the lower part of the

�gure, energy density in th is reg ion must take a negative value b ecause energy density of the vacuum state is zero and

larger than that of the surrounded region .
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By superposing total-energy eigenstates, quantum �uctuation in a local re-
gion can be more suppressed (squeezed) than that in the vacuum state via
a quantum interference e¤ect. In the upper part of �gure 13, a typical sit-
uation of local squeezing of the �uctuation is schematically depicted. The
part surrounded by an ellipse shows the region of suppressed �uctuation with
average energy density lower than that of the vacuum state. As seen in the
lower part of �gure 13, energy density in this region must take a negative
value because energy density of the vacuum state is zero and larger than that
of the surrounding region. It is worth stressing here that the total energy
cannot be negative even though we have a region with negative energy den-
sity. This implies that we have other regions with su¢ cient positive energy
to compensate for this negative energy, as in �gure 13. Local energy, which
is an integral of energy density with an appropriate window function in a
compact support, can also take a negative value, i.e., a value smaller than
that of the vacuum state (zero).

Figure 14: Illustration of passiv ity of the ground state. If any lo cal un itary op eration is p erform ed on the vacuum state,

the energy of the �eld do es not decrease but instead increases on average. This is b ecause the state is not the vacuum

state but an excited state. In the upp er part of the �gure, tota l energy is p ositive on average. In the lower part of the

�gure, the op eration enhances the amplitude of the red component even though it decreases the amplitude of the b lue

component.

This fact may tempt us to directly extract zero-point energy from the vac-
uum, which really carries zero local energy larger than the negative one. If
this was possible, we would get energy without any cost, but unfortunately,

14



it is not. If we could extract energy from the vacuum state, the �eld would
be in a state with total energy less than that in the vacuum state, that is, a
negative total-energy state. However, the total energy must be nonnegative.
Therefore, such energy extraction cannot be attained in physics. For exam-
ple, if any local unitary operation Ulocal (6= I) is performed in the vacuum
state jvaci, the energy of the �eld does not decrease but instead increases.
This is because Ulocaljvaci is not the vacuum state but an excited state [16].
Thus, just like in the upper part of �gure 14, the expectation value of total
energy must be positive:

�E = hvacjU ylocalHUlocaljvaci > 0: (3)

Therefore, the operation requires injection of the additional energy�E to the
�eld. Here, it should be emphasized that this energy increase takes place just
on average. It can happen that an operation Ulocal decreases the amplitudes
and energy contributions of a few components from among a large number
of superposed �uctuation patterns (the blue component, for instance, in the
lower part of �gure 14). This aspect becomes one of the key points in the
construction of QET later. However, if it happens, other components, like
the red one in the lower part of �gure 14, must be enhanced by much more
in their energy contributions to satisfy the average-value relation in Eq. (3).
The fundamental property in Eq. (3) is called passivity of the vacuum state.

Figure 15: Zero-p oint energy of the vacuum state may b e considered to b e inaccessib le free energy hidden in a safe

underground.

Due to the passivity, one might think that the zero-point energy of the vac-
uum state is actually inaccessible free energy hidden in a safe underground
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(�gure 15). It really exists in nothing, but cannot be harnessed as long as
available operations are local.
Though zero-point energy is totally useless for a single experimenter at a

�xed position, it becomes available if two separate experimenters are able to
perform both local operations and classical communication� this is QET. In
the ground state of an ordinary many-body system, like for a quantum �eld,
there exists a quantum correlation called entanglement [21] among zero-point
�uctuations of the subsystems. As seen in �gure 16, zero-point �uctuations
of the vacuum in regions A and B are correlated due to the kinetic term of
its Hamiltonian [22].

Figure 16: Zero-p oint �uctuations of a quantum �eld in regions A and B are entangled .

By virtue of the existence of entanglement, when local zero-point �uctuation
is measured at a position, the measurement result includes information about
quantum �uctuation at a distant position. This vacuum-state entanglement
is at the heart of the QET protocol with quantum �elds. As the �rst step
of the protocol, zero-point �uctuation is measured in region A to a¤ord the
result � (�gure 17).
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Figure 17: QET proto col. At �rst, zero-p oint �uctuation is m easured in region A and a measurem ent resu lt

corresp onding to the b lue component is obtained . The zero-p oint �uctuation is lo cally enhanced by inputting energy.

This resu lt includes in formation about p ost-m easurem ent quantum �uctuation in region B . The red component van ishes

b ecause of the wavefunction collapses on quantum measurem ent.

This result � includes information about post-measurement quantum �uc-
tuation in region B via entanglement. Hence, we can estimate the quantum
�uctuation at B on the basis of �. In the example shown in �gure 17, the
value of � corresponding to the blue-line component is obtained by this one-
shot measurement. In this case, the other (red-line) component vanishes
because of the wavefunction collapse when a quantum measurement is per-
formed. (Actually, practical measurements of local quantum �uctuation are
unable to select out a single con�guration of �uctuation, as depicted in �g-
ure 17. However, it is still true that the measurement results include some
information about �uctuation at a distant point, even though the amount
of information reduces as the distance increases.) It should be noted that
the measurement device injects positive energy EA into the �eld during this
measurement process because of the vacuum-state passivity. This injected
energy is regarded as energy input in the QET protocol. As the second step,
the measurement result � is announced from A to B via a classical channel.
The speed of this announcement can attain the velocity of light, in principle.
During this classical communication, we can neglect the time evolution of the
system, as explained later. On the basis of the announced �, we can devise
a strategy, that is, a local unitary operation UB(�) dependent on �, to sup-
press the realized quantum �uctuation at B for each value of �. As the �nal
step, UB(�) is performed on the quantum �uctuation of B. This operation
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yields negative energy density around B (�gure 18) by suppressing only the
amplitude of one component of �uctuation observed in the measurement.

Figure 18: Last step of the QET proto col. A unitary op eration is p erform ed on quantum �uctuation of B . The blue

component is suppressed by the op eration and yields negative lo cal energy. The surp lus energy is released as the energy

output of QET .

In �gure 18, the blue component is suppressed by UB(�). The operation
UB(�) with the value of � corresponding to the blue component does not
need to simultaneously suppress the red component in �gure 16 because it
has been already been eliminated by this one-shot measurement. This breaks
the passivity barrier against harnessing zero-point energy. After the last step,
the local energy of the �eld around B takes a negative value �EB. According
to local energy conservation, positive energy +EB is moved from the �eld to
external systems, including the device executing UB(�). This is regarded as
energy output in the QET protocol and can be harnessed for an arbitrary
purpose. Thus, QET really succeeds in e¤ective energy teleportation in an
operational sense. After completion of the protocol, the total energy of the
�eld is equal to EA�EB. Therefore, the input energy EA is not smaller than
the output energy EB:

EA � EB;

because the total energy does not become negative. Note that the positive
local energy +EA of the �eld in region A compensates for the negative local
energy �EB of the �eld in region B in late-time evolution. Hence, the late-
time evolution with cool-down of the system after one round of a short-acting
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QET protocol plays a clearing role at the resuming step of the protocol to
prepare for the next round.
This QET mechanism can be summarized using an analogy as follows. As

seen in �gure 15, the zero-point energy, which will become the output energy
+EB of QET, is analogous to the energy Ezero�point saved in the locked safe
underground. In QET, we get information about a key to the safe, allowing
us to extract the zero-point energy by a remote measurement at A via the
vacuum-state entanglement (�gure 19).

Figure 19: QET is analogous to the fo llow ing pro cess: We get in formation , a key to the safe dep icted in �gure 15, by a

remote m easurem ent at A . Using th is, the stored zero-p oint energy can b e extracted . However, we must pay the

quantum �uctuation at A for th is. The cost is p ositive energy, which is larger than the extracted zero-p oint energy from

the safe at B .

However, we must pay the quantum �uctuation at A for this extraction.
The cost is energy EA, which is larger than the extracted zero-point energy
Ezero�point(= EB) taken from the safe at B.
From an operational point of view, the quantum �eld system can be

described as a microscopic �energy transporter�from Alice to Bob� yes, like
the one in Star Trek� as depicted by the two ellipses connected by the dashed
line in �gure 20.
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Figure 20: Instantaneous state change of QET energy transp orter. A quantum �eld system is dep icted as an energy

transp orter by two ellipses connected by the dashed line in the �gure. In the left part of the �gure, the �eld is in the

vacuum state carry ing no availab le energy. Perform ing a measurem ent w ith energy input to A lice�s transp orter device,

an energetic �uctuation pattern is rea lized inside Bob�s device as dep icted in the right part of the �gure.

Before Alice�s measurement, the �eld is in the vacuum state �vac = jvacihvacj
carrying no available energy, as depicted in the left part of �gure 20. The
zero-point energy of quantum �uctuation has not yet been activated for use.
By performing a measurement with energy input to Alice�s transporter de-
vice, one component of the energetic �uctuation pattern is realized instanta-
neously inside Bob�s device, as depicted in the right part of �gure 20. More
precisely speaking, the post-measurement state �� of the �eld, which cor-
responds to the measurement result �, carries the available zero-point �eld
energy, which can be extracted later by Bob�s operation UB(�) generating
negative energy of �uctuation. Note that the energy injected to Alice�s device
becomes inactive due to the decrease of the vacuum entanglement during her
measurement, as will be explained in section 4. Using both this protocol of
energy transportation and the standard teleportation protocol for quantum
information, it is possible, in principle, to teleport an object with energy to
a zero-energy local-vacuum region.
Now, the trick to the QET magic considered �rst is clear; it is depicted

in �gure 21.
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Figure 21: Secrets to the �rst QET magic trick .

The trick inside A in �gure 6 is the measurement of zero-point �uctuation.
The input energy EA is consumed when performing the measurement. The
abracadabra announced from Alice to Bob is the measurement result �. The
process inside B in �gure 7 is the local operation UB(�) dependent on �. After
the completion of this magic, positive local energy +EA has been hidden
inside A and negative local energy �EB inside B.
In this section, we have omitted the time evolution of quantum �elds

during the QET protocol for two reasons: The �rst is that the �eld system
can be nonrelativistic. In condensed matter physics, we have many systems,
including quantum Hall edge current [17] [12] and graphene [18], that are de-
scribed by e¤ective �eld theory. The speed of energy carriers in these systems
is much smaller than the velocity of light. Therefore, the local operations
and classical communication of QET can be assumed to take a very short
time, during which we may neglect time evolution of the e¤ective �elds. The
second reason is that a QET process in which time evolution is essentially
irrelevant can be actually constructed using relativistic �elds [11]. We are
able to consider a setting in which wave packets excited by Alice�s measure-
ment do not propagate toward Bob in time evolution. Thus, Alice can send
only information to Bob, avoiding directly sending Bob the energy emitted
from the measurement device. This allows us to establish a nontrivial QET
protocol between them. In fact, such a QET protocol with a relativistic �eld
is introduced in section 5.
Before closing this section, it is worth stressing that we do not need to

worry about time-energy uncertainty relations for measurements of the out-
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put energy EB of QET. In contrast to the position-momentum uncertainty
relation, time-energy uncertainty relations are not fundamental laws. They
are conceptually dependent on purposes of our tasks and models of energy
measurements, and do not have a universal meaning in quantum theory [19].
This is essentially because time in quantum theory is not an observable to be
measured but an external parameter. We must �x in advance a de�nite time
slice in our spacetime to de�ne a quantum state of a system and perform
measurements of arbitrary observables at the time. The Hamiltonian, which
stands for the total energy of the system, is just one of ordinary observables
we can measure instantaneously at a �xed time slice. In fact, the very famous
pointer-basis measurement proposed by von Neumann [20] is capable of at-
taining an instantaneous measurement of energy as follows. Let us consider a
system S with Hamiltomian HS and a probe system to measure energy of S.
The probe is a quantum particle in an in�nite line parametrized by a spatial
coordinate x. The position x of the particle is interpreted as the position of
the energy pointer of the measurement device. Let us assume that the initial
state of the pointer particle is localized at x = 0 as

 P (x) = �(x):

The pointer particle has no free Hamiltonian, but couples with S via a mea-
surement interaction given by

Hm(t) = �(t)HS 
 (�i~@x): (4)

Let us prepare a state of S such that

j	Si =
X
n

cnjEni;

where cn are complex coe¢ cients, and jEni is an eigenstate ofHS correspond-
ing to an eignvalue En. After the instantaneous interaction (4), the state of
the composite system becomes

exp [�HS 
 @x] (j	Si 
  P (x)) =
X
n

cnjEni 
 �(x� En):

Soon after the switch o¤ of the interaction, we can perform a projective
measurement of the position x of the pointer particle. This gives a value
of energy of S at t = 0 as a single-shot measurement result. Therefore
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energy can be measured instantaneously. Meanwhile, if one may consider
a bad class of energy measurements, time-energy uncertainty relations hold
and prevent us from measuring energy precisely. For example, tracking time
evolution of a state of a system during a time T allows us to estimate energy
of the system by using time-Fourier transformation of the state. However,
the estimation has inevitable error of order of ~=T in a similar way to the
momentum measurement of a particle con�ned in a �nite spatial region. In
our QET analysis, we do not adopt such bad measurements governed by
(non-universal) time-energy uncertainty relations. In the reference [12] and
the last part of the next section, more realistic models of extraction and
measurement of EB are discussed.

3 Minimal QET Model

In this section, the most simple example of QET is reviewed. We adopt
the natural unit ~ = 1. For a detailed analysis, see [6]. The system consists
of two qubits A and B. Its Hamiltonian reads

H = HA +HB + V;

where each contribution is given by

HA = h�zA +
h2p

h2 + k2
; (5)

HB = h�zB +
h2p

h2 + k2
; (6)

V = 2k�xA�
x
B +

2k2p
h2 + k2

; (7)

and h and k are positive constants with energy dimensions, �xA (�xB) is the
x-component of the Pauli operators for the qubit A (B), and �zA (�

z
B) is the

z-component for the qubit A (B). The constant terms in Eqs. (5)�(7) are
added in order to make the expectation value of each operator zero for the
ground state jgi:

hgjHAjgi = hgjHBjgi = hgjV jgi = 0:
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Because the lowest eigenvalue of the total Hamiltonian H is zero, H is a
nonnegative operator:

H � 0;
which means that expectation value of H for an arbitrary state j	i is non-
negative:

h	jHj	i � 0:
Meanwhile, it should be noted thatHB andHB+V have negative eigenvalues,
which can yield negative energy density at B. The ground state is given by

jgi = 1p
2

s
1� hp

h2 + k2
j+iAj+iB

� 1p
2

s
1 +

hp
h2 + k2

j�iAj�iB;

where j�iA (j�iB) is the eigenstate of �zA (�zB) with eigenvalue �1. A QET
protocol is constructed by the following three steps:

� I. A projective measurement of observable �xA is performed on A in the
ground state jgi and a measurement result � = �1 is obtained. During
the measurement, a positive amount of energy

EA =
h2p

h2 + k2
(8)

is injected to A on average.

� II. The result � is announced to B via a classical channel at a speed
much faster than the velocity of energy di¤usion of the system.

� III. Let us consider a local unitary operation on B depending on the
value of � given by

UB(�) = IB cos � � i��yB sin �;

where � is a real constant that satis�es

cos (2�) =
h2 + 2k2q

(h2 + 2k2)2 + h2k2
; (9)

sin (2�) =
hkq

(h2 + 2k2)2 + h2k2
: (10)
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UB(�) is performed on B. During the operation, a positive amount of
energy

EB =
h2 + 2k2p
h2 + k2

"s
1 +

h2k2

(h2 + 2k2)2
� 1
#

(11)

is extracted from B on average.

The protocol is schematically depicted in �gure 22.

Figure 22: M in imal model of QET w ith two qubits.

Firstly, the projection operator corresponding to each measurement result �
of �xA is given by

PA(�) =
1

2
(1 + ��xA) :

The post-measurement state of the two qubits with output � is given by

jA(�)i = 1p
pA(�)

PA(�)jgi;

where pA(�) is the emergence probability of � for the ground state and given
by hgjPA(�)jgi. It is easy to check that the average post-measurement state
given by X

�

pA(�)jA(�)ihA(�)j =
X
�

PA(�)jgihgjPA(�)
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has a positive expectation value EA of H, which has an energy distribution
localized at A. In fact, the value de�ned by

EA =
X
�

hgjPA(�)HPA(�)jgi =
X
�

hgjPA(�)HAPA(�)jgi (12)

can be computed straightforwardly and Eq.(8) is obtained. This injected
energy EA is regarded as the QET energy input via the measurement of A.
During the measurement, EA is transferred from external systems, includ-
ing the measurement device and its power source, respecting local energy
conservation.
The nontrivial feature of this measurement is that it does not increase

the average energy of B at all. By explicit calculations using

[�xA; HB] = [�
x
A; V ] = 0;

the average values of HB and V are found to remain zero after the measure-
ment and are the same as those in the ground state:X

�

hgjPA(�)HBPA(�)jgi = hgjHBjgi = 0;X
�

hgjPA(�)V PA(�)jgi = hgjV jgi = 0:

Thus we cannot extract energy from B by local operations independent of
� soon after the measurement. To verify this fact explicitly, let us consider
a local unitary operation WB independent of � and performed on B. Then
the post-operation state ! is given by

! =
X
�

WBPA(�)jgihgjPA(�)W y
B

= WB

 X
�

PA(�)jgihgjPA(�)
!
W y
B:

The energy di¤erence after the operation is calculated as

EA � Tr [!H] = �hgjW y
B (HB + V )WBjgi; (13)

where we have used

W y
BHAWB = HAW

y
BWB = HA;
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h
W y
B (HB + V )WB; PA(�)

i
= 0;

and the completeness relation of PA(�):X
�

PA(�) = 1A:

From Eq. (13), it is proven that the energy di¤erence is not positive:

EA � Tr [!H] = �hgjW y
BHWBjgi � 0;

because of a relation such that

hgjW y
BHAWBjgi = hgjHAjgi = 0

and the nonnegativity of H. Therefore, as a natural result, no local operation
onB independent of � extracts positive energy fromB by decreasing the total
energy of the two qubits.
The injected energy EA di¤uses to B after a while. The time evolution

of the expectation values HB and V of the average post-measurement state
is calculated as

hHB(t)i =
X
�

hgjPA(�)jgihA(�)jeitHHBe
�itH jA(�)i

=
h2

2
p
h2 + k2

[1� cos (4kt)] ;

and
hV (t)i =

X
�

hgjPA(�)jgihA(�)jeitHV e�itH jA(�)i = 0:

Therefore, we enable energy to be extracted from B after a di¤usion time
scale of 1=k; this is just the more pedestrian form of energy transportation
from A to B. The QET protocol achieves energy transportation from A to
B in a time scale much shorter than that of this conventional transportation.
In step II of the protocol, the measurement output � is announced to B.

Because the model is nonrelativistic, the propagation speed of the announced
output can be much faster than the di¤usion speed of the injected energy
and can be approximated as in�nity. Soon after the arrival of the output
�, UB(�) is performed on B. Then the average state after the operation is
given by
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� =
X
�

UB(�)PA(�)jgihgjPA(�)UB(�)y:

The expectation value of the total energy after the operation is given by

Tr [�H] =
X
�

hgjPA(�)UB(�)yHUB(�)PA(�)jgi:

On the basis of the fact that UB(�) commutes with HA and Eq. (12), the
output energy EB is computed as

EB = EA � Tr [�H] = �Tr [� (HB + V )] :

Further, on the basis of the fact that PA(�) commutes with UB(�), HB, and
V , the energy can be written as

EB = �
X
�

hgjPA(�) (HB(�) + V (�)) jgi;

where the �-dependent operators are given by

HB(�) = UB(�)
yHBUB(�);

V (�) = UB(�)
yV UB(�):

By a straightforward calculation, EB is computed as

EB =
1p

h2 + k2

�
hk sin(2�)�

�
h2 + 2k2

�
[1� cos (2�)]

�
: (14)

Note that EB = 0 if � = 0, as it should be. If we take a small positive value
of � in Eq. (14), note that EB takes a small positive value such that

EB �
2hk j�jp
h2 + k2

> 0:

Maximization of EB in terms of � is achieved by taking a value of � that
satis�es Eqs. (9) and (10). Substituting Eqs. (9) and (10) into Eq. (14)
yields the positive value of EB in Eq. (11). Therefore, even though energy
carriers coming from A have not yet arrived at B, the QET protocol can
achieve energy extraction from B. As stressed in section 2, the success of
energy extraction is due to the emergence of negative energy density at B.
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In the section of summary and comment, it will be discussed that a large
amount of teleported energy requests a large amount of consumption of the
ground-state entanglement between A and B in this model.
Finally a comment is added about extraction and measurement of EB.

As mentioned in the previous section, there is a nontrivial aspect of energy
measurements. Some bad measurements su¤er from time-energy uncertainty
relations and give inevitable error in estimation of EB. However, we can
avoid such a risk by adopting other good measurements of energy. The
pointer-basis measurement is one of such good measurements, as stressed in
the previous section. Here another setup to measure EB [5] [7] is reviewed
compatible with realistic experiments of QET. The scheme is depicted in
�gure 23.

Figure 23: Extraction and measurem ent of the output energy.

After the arrival of the measurement result � at the region of B, let us gen-
erate a laser pulse W (�) in an optical �ber which polarization is dependent
on �. A spatial coordinate � parametrizes the �ber. The �ber is connected
between the generation point of W (�) (� = �i) and the �nal point (� = �f )
via a point � = �B where spin B stays: �i < �B < �f . The pulse W (�)
moves toward the �nal point, and intersects with spin B at � = �B on the
way. Then it can be veri�ed as follows that W (�) performs UB(�) to B. Let
us introduce creation and annihilation bosonic operators 	y�(�) and 	�(�)
for one photon of the laser �eld with polarization � = � in the �ber. The
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operators 	y�(�) and 	�(�) satisfy the following commutation relations:h
	�(�); 	

y
�0(�

0)
i
= ���0� (� � � 0) ;

[	�(�); 	�0(�
0)] = 0;h

	y�(�); 	
y
�0(�

0)
i
= 0:

The vacuum state j0i of the laser �eld is de�ned by

	�(�)j0i = 0:

Let us assume that the initial state of the laser �eld is a pulse-wave coherent
state with polarization � given by

j�i / exp
�Z 1

�1
fi(�)	

y
�(�)d�

�
j0i;

where fi(�) is the coherent amplitude of the state and a function with a
support localized around � = �i. The �eld strength of the pulse is de�ned by

F =

Z 1

�1
jfi(�)j2 d�:

In order to consider a semi-classical coherent state, let us take a large value
of F . The free Hamiltonian of the �ber photon reads

H	 = �
ic

2

Z 1

�1

�
	(�)y@�	(�)� @�	(�)

y	(�)
�
d�;

where c is the light velocity in the �ber and 	(�) is given by

	(�) =

�
	+(�)
	�(�)

�
:

The free evolution of the photon �eld is given by

eitH		(�)e�itH	 = 	(� � ct):

The laser �eld couples with spin B via the interaction given by

HLO =
c

dF
��yB

Z �B+d=2

�B�d=2

h
	y+(�)	+(�)�	y�(�)	�(�)

i
d�; (15)
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where d is the width of the interaction region. The total Hamiltonian of the
composite system is expressed as

Htot = H +HLO +H	;

and conserved in time. Before the intersection of W (�) with B, the initial
state of the composite system is given by

PA(�)jgihgjPA(�)
hgjPA(�)jgi


 j�ih�j:

In this model, the evolution of the laser pulse induces e¤ective switching of
the interaction for UB(�). In fact, the interaction HLO in Eq. (15) is active
only when the pulse exists inside [�B � d=2; �B + d=2]. Because W (�) is a
semi-classical coherent pulse with large F , the photon �eld can be treated as
an external classical �eld for B in the leading approximation. The switch-
ing process for B is described by an e¤ective interaction Hamiltonian as
h�jHLO(t)j�i, where HLO(t) = eitH	HLOe

�itH	. Assuming that the width of
the pulse form fi(�) is much smaller than d, h�jHLO(t)j�i can be approxi-
mated as

h�jHLO(t)j�i �
c

d
�

�
d

2c
� jtj

�
��yB

�

F

Z 1

�1
jfi(�)j2 d� � � (t)���yB

by taking the nonrelativistic limit (c � 1). Then the time evolution operator
of B induced by this e¤ective interaction is calculated as

Texp

�
�i
Z +0

�0
h�jHLO(t)j�idt

�
= exp [�i���yB] = UB(�):

Thus, the interaction in Eq. (15) certainly reproduces the operation UB(�).
The energy ofW (�) changes when the pulse passes through [�B � d=2; �B + d=2].
The average energy of the two-spin system before the interaction with the
pulse is EA. The initial averaged energy of the pulse is denoted by E1. The
average energy of the two-spin system after the interaction becomes EA�EB
because UB(�) is operated to B and the energy decreases as the QET e¤ect.
The averaged pulse energy after the interaction is denoted by E2. Then the
conservation of Htot ensures that

EA + E1 = (EA � EB) + E2; (16)
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becauseHLO has no contribution in the initial and �nal state of the scattering
process between B and the pulse. Using Eq. (16), the output energy of QET
can be rewritten as EB = E2 � E1. Consequently, by measuring the initial
and �nal energy of the pulse many times and taking the averages, we can
precisely determine the output energy of QET without any problems caused
by time-energy uncertainty relations.

4 General Theory of Quantum Energy Tele-
portation

In this section, the general theory of QET is introduced for one-dimensional
discrete chain models. The model is a system composed of many quantum
subsystems of general types arrayed in one dimension. The subsystems, la-
beled by site numbers n, are coupled with each other via nearest-neighbor
interactions, as depicted in �gure 24.

Figure 24: One-d im ensional d iscrete chain model.

We adopt ~ = 1 unit and concentrate on a short time scale during which
dynamical evolution induced by the Hamiltonian H is negligible. Let us
denote the di¤erence between the largest and smallest eigenvalues of H by
�E. The timescale t discussed here is assumed to satisfy

t� 1

�E
: (17)
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Assuming this condition, it is valid to treat the time evolution operator as
exp [�itH] � I. It should also be noted that the condition in Eq. (17) can
be weakened in the case that a �nite amount of energy Ein less than �E is
inputted to the system in the ground state, as follows:

t� 1

Ein
:

In addition, let us assume that LOCC can be repeated for the subsystems
many times even in the short time interval. If the site number di¤erence
between two parties in the protocol is given by �n and the chain spacing
between nearest-neighbor sites is given by a, the time scale condition for
many-round LOCC is expressed as

t� a�n=c; (18)

where c is the velocity of light. By taking the nonrelativistic limit c ! 1,
the relation in Eq.(18) always holds.
The energy density operators are Hermitian operators and take the gen-

eral forms of

Tn = Xn +
X
j

�
1

2
gn�1=2;jYn�1;jYn;j +

1

2
gn+1=2;jYn;jYn+1;j

�
; (19)

whereXn and Yn;j are local operators for the subsystem at site n, and gn�1=2;j
are real coupling constants for the nearest-neighbor interaction. The total
Hamiltonian is given by a site-sum of Tn:

H =
X
n

Tn:

The ground state jgi is the eigenstate of H with the lowest eigenvalue. If the
expectation values of Tn do not vanish for the ground state as

hgjTnjgi = �n 6= 0;

we shift the operator Xn on the right-hand side of Eq. (19) by the constant
�n as

X 0
n = Xn � �n;

without changing physics. Then, without loss of generality, we can assume
the relation given by
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hgjTnjgi = 0: (20)

Eq. (20) derives that the eigenvalue of H for the ground state is zero:

Hjgi = 0: (21)

This is because the eigenvalue is equal to hgjHjgi and the following relation
holds:

hgjHjgi =
X
n

hgjTnjgi = 0:

From Eq. (21), it is ensured that the Hamiltonian H is a nonnegative oper-
ator:

H � 0: (22)

Next, let us de�ne a separable ground state. The separable ground state
is the ground state that takes the form of a product of each-site pure states
such that

jgi =
Y
n

jgni: (23)

Here jgni is a pure state for the subsystem at site n. This separable ground
state satis�es the factorization property. For instance, a two-point function
of Tn and a local operator Om at site m with jn�mj > 1 is equal to the
product of the one-point functions for the ground state jgi:

hgjTnOmjgi = hgjTnjgihgjOmjgi: (24)

It is well known that the relation in Eq. (24) is often broken for ordinary
quantum systems. This implies that the ground states of standard many-
body systems are usually nonseparable, and do not satisfy Eq. (23). Such a
nonseparable ground state with

jgi 6=
Y
n

jgni: (25)

is called an entangled ground state. In the entangled ground state, quantum
�uctuations of subsystems share a quantum correlation, that is, entangle-
ment. Though entanglement is an informational concept, it is simultaneously

34



a physical resource of quantum communication. For a detailed explanation,
see the text book by [21].
If a ground state satis�es the relation of broken factorization,

hgjTnOmjgi 6= hgjTnjgihgjOmjgi (26)

for the energy density at site n and a local operator Om with jn�mj > 1,
then the ground state is entangled. This ground-state entanglement leads
to an interesting result. It can be proven by use of entanglement that the
energy density Tn takes a negative value even though the total Hamiltonian
is nonnegative. In order to verify this, let us �rst prove a useful lemma:
The lemma states that if the entangled ground state jgi satis�es the relation
in Eq. (26), then jgi is not an eigenstate of Tn. This is because assuming
Tnjgi = "njgi with an eigenvalue "n leads to the factorization in Eq. (24)
and contradicts Eq. (26). In fact, using hgjTn = "nhgj and "n = hgjTnjgi, we
can directly derive Eq. (24) as follows.

hgjTnOmjgi = "nhgjOmjgi = hgjTnjgihgjOmjgi:

By use of this lemma, we next show that the lowest eigenvalue ��(n) of Tn
is negative. The operator Tn can be spectrally decomposed into

Tn =
X
�;k�

��(n)j��(n); k� ; nih��(n); k� ; nj;

where ��(n) are eigenvalues of Tn; j��(n); k� ; ni are corresponding eigenstates
in the total Hilbert space of the chain system; and the index k� denotes
the degeneracy freedom of the eigenvalue ��(n). The ground state can be
expanded as

jgi =
X
�;k�

g�;k� (n)j��(n); k� ; ni;

where g�;k� (n) are complex coe¢ cients. Using this expansion, Eq. (20) is
rewritten as X

�;k�

��(n) jg�;k� (n)j
2 = 0: (27)

If ��(n) is positive, Eq. (27) clearly has no solution for g�;k� (n); thus, it is
impossible. If ��(n) is zero, then Eq. (27) has a solution with nonvanishing
g�;k�(n). Because all the other coe¢ cients g�;k� (n) must vanish, this means
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that jgi is an eigenstate of Tn with ��(n) = 0. Therefore, this contradicts
Eq. (26) via the above lemma. Therefore, ��(n) must be negative:

��(n) = � j��(n)j < 0:

The average energy density for j��(n); k�; ni also becomes negative. It is
thereby veri�ed that there exist quantum states with negative energy den-
sity. It should be stressed that even if a state has negative energy density
over a certain region, there exists compensating positive energy density in
other regions such that the total energy is not negative, because of the non-
negativity of H.
In the later discussion, we adopt general measurements beyond ideal (pro-

jective) measurements. Here, let us give a brief overview of the general
measurements, which are usually called positive operator valued measure
(POVM) measurements. Let us �rst consider a quantum system S in a state
j iS about which we wish to obtain information. That is, S is the target
system of the measurement. In order to execute quantum measurements,
we need another quantum system P as a probe. Initially, P is in a state
j0iP . In general, the dimensionality of the Hilbert space of S is not equal
to that of P . We bring P into contact with S via measurement interactions
between the two. In this process, information about j iS is imprinted into
P . After switch-o¤ of the measurement interactions and subsequent signal
ampli�cation of the probe system, the total system is in an entangled state
that takes a form

j	iSP =
X
n;�

cn�jniSj�iP :

Here, fjniSg is a complete set of orthonormal basis state vectors of S, and
fj�iPg is a set of orthonormal state of P . The coe¢ cient cn� depends on
the initial state j iS of S. For the state j	iSP , a projective measurement
detecting which j�iP is realized for P is performed in order to obtain im-
printed information about j iS. This completes a general measurement. A
conceptual diagram of the measurement is given in �gure 25.
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Figure 25: Illustration of POVM measurem ent.

The emergence probability of � is given by

p� =
X
n

jcn�j2;

which is dependent on j iS. Such a general measurement can be always
described using measurement operatorsMS(�) [21], which act on the Hilbert
space of S and satisfy X

�

MS(�)
yMS(�) = IS;

where the number of MS(�) is not generally equal to the number of dimen-
sions of the Hilbert space of S. It should be stressed that in general, MS(�)
is not a projective Hermitian operator. It can be shown that for an arbitrary
quantum state �S of S, the emergence probability p(�) of � can be calculated
as

p(�) = Tr
�
�SMS(�)

yMS(�)
�
:

The post-measurement state of S can be computed as

�(�) =
MS(�)�SMS(�)

y

Tr [�SMS(�)yMS(�)]
:

In mathematics, the set of Hermitian positive semide�nite operatorsMS(�)
yMS(�)

is called positive operator valued measure (POVM for short). This is why
the general measurement is often called POVM measurement.
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Next, let us construct a QET protocol with a discrete chain system. Let
us assume that Alice stays in front of one subsystem A at n = nA, and
Bob stays in front of another subsystem B at n = nB with jnA � nBj � 5.
Because they are su¢ ciently separated from each other, it is not only the
local operators of A but also the energy density operator TnA, which is semi-
local, that commute with local operators of B and TnB . At the �rst step
of the QET protocol, Alice performs a POVM measurement on A, which
is described by measurement operators MA (�) with output � satisfying the
sum rules given by X

�

MA (�)
yMA (�) = IA: (28)

The POVM of this measurement is de�ned by

�A (�) =MA (�)
yMA (�) (29)

Then emergence probability of � is computed for the ground state as

pA(�) = hgj�A (�) jgi:

The post-measurement state corresponding to � is given by

jA(�)i = 1p
pA(�)

MA (�) jgi:

The average post-measurement state is calculated as

�M =
X
�

pA(�)jA(�)ihA(�)j =
X
�

MA (�) jgihgjMA (�)
y :

Therefore, the expectation value of total energy after the measurement is
evaluated as

EA = Tr [H�M ] =
X
�

hgjMA (�)
yHMA (�) jgi:

Due to the passivity of jgi, EA is positive. Thus, the measurement device
injects energy EA into the chain system during the measurement. EA is the
input energy of the QET protocol. Because we consider a short time scale
for the QET protocol, time evolution of the chain system can be neglected.
Hence, the input energyEA is localized around site nA after the measurement.
To see this directly, let us introduce a local energy operator HA around site
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nA by the sum of energy density operators that include contributions from
A:

HA =

nA+1X
n=nA�1

Tn:

Let us also de�ne an energy operator outside of nA as

H �A = H �HA:

Then EA can be computed as

EA =
X
�

hgjMA (�)
yHAMA (�) jgi

+
X
�

hgjMA (�)
yH �AMA (�) jgi: (30)

Because of the commutation relation given by

[H �A; MA (�)] = 0;

the second term on the right-hand side in Eq. (30) vanishes as follows.X
�

hgjMA (�)
yH �AMA (�) jgi

= hgj
 X

�

MA (�)
yMA (�)

!
H �Ajgi

= hgjH �Ajgi =
X

n=2[nA�1;nA+1]

hgjTnjgi

= 0:

Here, we have used Eqs. (28) and (20). Therefore, EA is equal to the average
local energy around site nA:

EA =
X
�

hgjMA (�)
yHAMA (�) jgi: (31)

It is also veri�ed that the expectation values of Tn with jn� nAj � 2 remain
exactly zero after the measurement. This ensures that the input energy EA
is stored locally around site nA. The measurement step is schematically
depicted in �gure 26.

39



Figure 26: F irst step of a QET proto col w ith a d iscrete chain .

At the second step, Alice announces the measurement result � to Bob via a
classical channel. We can assume that the speed of communication is greater
than that of energy di¤usion of the system. Thus, time evolution of the
system is omitted. The second step is schematically depicted in �gure 27.

Figure 27: Second step of a QET proto col w ith a d iscrete chain .

At the third step, Bob performs a local operation UB (�) dependent on � on
B. UB (�) is given by

UB (�) = exp [�i��GB] ; (32)

40



where GB is a local Hermitian operator on B and � is a real constant set such
that a positive amount of energy is teleported via QET. After the operation,
the average state of the chain system becomes

�QET =
X
�

UB(�)MA(�)jgihgjMA(�)
yUB(�)

y: (33)

The amount of energy extracted from the chain during the operation is given
by

EB = EA � Tr [H�QET ] :
This is the output energy of the QET protocol. Later, let us evaluate EB.
Substituting Eq. (33) into the above equation yields

EB = EA �
X
�

hgjMA (�)
y UB(�)

yHUB(�)MA (�) jgi: (34)

As in the case ofHA, let us introduce, for convenience, a local energy operator
around site nB as

HB =

nB+1X
n=nB�1

Tn:

In addition, the energy operator HAB outside nA and nB is de�ned as

HAB = H �HA �HB:

By this de�nition, we can derive the following commutation relations because
of operator locality.

[HAB; MA (�)] = 0; (35)

[HAB; UB(�)] = 0: (36)

Because the total Hamiltonian H in Eq. (34) is given by a sum of HA; HB

and HAB, we obtain the following relation.

EB = EA �
X
�

hgjMA (�)
y UB(�)

yHAUB(�)MA (�) jgi

�
X
�

hgjMA (�)
y UB(�)

yHBUB(�)MA (�) jgi

�
X
�

hgjMA (�)
y UB(�)

yHABUB(�)MA (�) jgi: (37)
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The second term on the right-hand side of Eq. (37) can be computed as

�
X
�

hgjMA (�)
y UB(�)

yHAUB(�)MA (�) jgi

= �
X
�

hgjMA (�)
y UB(�)

yUB(�)HAMA (�) jgi

= �
X
�

hgjMA (�)
yHAMA (�) jgi = �EA;

where we have used an operator locality relation given by [HA; UB(�)] = 0,
the unitary relation of UB(�), and Eq. (31). This term compensates for the
�rst term (EA) and has no contribution. The fourth term on the right-hand
side of Eq. (37) vanishes as follows.

X
�

hgjMA (�)
y UB(�)

yHABUB(�)MA (�) jgi

=
X
�

hgjMA (�)
y UB(�)

yUB(�)HABMA (�) jgi

=
X
�

hgjMA (�)
yHABMA (�) jgi

= hgj
 X

�

MA (�)
yMA (�)

!
HABjgi

= hgjHABjgi = hgjHjgi �
nA+1X
n=nA�1

hgjTnjgi �
nB+1X
n=nB�1

hgjTnjgi

= 0

Here, we have used Eq. (36), the unitary relation of UB(�), Eq. (35), Eq.
(28), and Eq. (20) in this order. Therefore, EB is equal to the third term on
the right-hand side of Eq. (37):

EB = �
X
�

hgjMA (�)
y UB(�)

yHBUB(�)MA (�) jgi:

Because UB(�)yHBUB(�) commutes withMA (�) due to the operator locality,
we can rewrite EB as

EB = �
X
�

hgj�A (�)UB(�)yHBUB(�)jgi (38)

42



by using Eq. (29). The output energy EB in Eq. (38) can always take a
positive value by properly selecting the value of � in Eq. (32). In fact, let us
consider a case with a small value of j�j in which UB (�) can be approximated
as

UB (�) = exp [�i��GB] � 1� i��GB:

Then EB is evaluated as

EB = �hgj
 X

�

MA (�)
yMA (�)

!
HBjgi

+ i�hgj
 X

�

��A (�)

!
[HB; GB] jgi+O(�2):

The �rst term in the above equation vanishes because of Eq. (28) and Eq.
(20). Therefore, EB is written as

EB = �hgjDA
_GBjgi+O(�2);

where DA is a Hermitian operator given by

DA =
X
�

��A (�)

and _GB is a Hermitian operator given by

_GB = i [HB; GB] = i [H; GB] :

By this de�nition, _GB denotes the time derivative operator of the Heisenberg
operator GB(t) = eitHGBe

�itH at t = 0. Let us introduce a signi�cant
parameter � as a two-point function for the ground state, given by

� = hgjDA
_GBjgi:

The reality of � (�� = �) is guaranteed by an operator locality relation given

by
h
DA; _GB

i
= 0. Then EB is simply written as

EB = �� +O(�2):
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As long as � does not vanish, EB can take a positive value;

EB � j��j > 0

by taking the same sign of � as that of �:

� = sgn (�) j�j :

Therefore, it is really possible to teleport a positive amount of energy by this
protocol. It is also veri�ed that local energy around site nB takes a negative
value �EB because of local energy conservation. The last step of the protocol
is depicted schematically in �gure 28.

Figure 28: Third step of a QET proto col w ith a d iscrete chain .

Maximization of EB in terms of � should be independently performed for
each QET model. For example, in a protocol with a qubit chain, we have the
following result [4]-[5]. The qubit chain is composed of qubits arrayed in one
dimension and coupled by nearest-neighbor interactions. In the model, Alice
measures a local observable �A given by a component of the Pauli operator
in the direction of a three-dimensional unit real vector ~uA such that

�A = ~uA � ~�nA :

The outputs � are its eigenvalue �1, and projective operators onto the eigen-
states corresponding to � are denoted by PA(�). Then the input energy is
given by
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EA =
X
�

hgjPA (�)HPA (�) jgi:

The local generator GB of Bob�s operation is given by a component �B of
the Pauli operator in the direction of a three-dimensional unit real vector ~uB
such that

GB = �B = ~uB � ~�nB :
Because the eigenvalues of GB are�1, the square of GB becomes the identical
operation of B:

G2B = IB:

Therefore, we can calculate UB (�) without approximation as

UB (�) = exp [�i��GB]
= IB cos � � i��B sin �: (39)

Using Eq. (39), EB in Eq. (38) is explicitly computed as

EB =
�

2
sin(2�)� �

2
(1� cos (2�)) ; (40)

where � is given by
� = hgj�A _�Bjgi

with DA = �A and GB = �B. The constant � is de�ned as

� = hgj�BH�Bjgi;

and is positive. Maximization of EB in terms of � is achieved by �xing � as

cos (2�) =
�p

�2 + �2
; (41)

sin(2�) =
�p

�2 + �2
: (42)

Substituting Eqs. (41) and (42) into Eq. (40) yields the maximum value of
EB such that

EB =
1

2

hp
�2 + �2 � �

i
:

As long as � is nonzero, EB becomes positive.
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As a signi�cant qubit chain model, let us consider the critical Ising model
with transverse magnetic �eld. It has energy density at site n

Tn = �J�zn �
J

2
�xn
�
�xn+1 + �xn�1

�
� �;

where J is a positive constant and � is a real constant satisfying hgjTnjgi = 0.
The total Hamiltonian reads

H =
X
n

Tn = �J
" 1X
n=�1

�zn +

1X
n=�1

�xn�
x
n+1

#
� Eg; (43)

where Eg is a constant that shifts the eigenvalue of the ground state jgi
to zero. Let us take ~uA = (0; 1; 0)T and ~uB = (1; 0; 0)T . By the standard
treatment of the model, we can analytically evaluate Alice�s input energy [4]
as

EA =
6

�
J:

Meanwhile, Bob�s output energy is evaluated [4] as

EB =
2J

�

"r
1 +

��
2
�(jnA � nBj)

�2
� 1
#
;

where the function �(n) is de�ned by

�(n) = �
�
2

�

�n
22n(n�1)h(n)4

(4n2 � 1)h(2n)

with

h(n) =

n�1Y
k=1

kn�k:

When we take a large separation between Alice and Bob (jnB � nAj � 1), it
is straightforwardly veri�ed that the decay of EB obeys not an exponential
but a power law because of the criticality of this model. In fact, EB takes an
asymptotic form of

EB � J
�

64

p
e21=6c�6 jnB � nAj�9=2 ; (44)

where the constant c is evaluated as c � 1:28.
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Note that the input energy EA is still stored around Alice even after the
last step of the QET protocol. What happens if Alice attempts to completely
withdraw EA by local operations at site nA after the energy extraction by
Bob? If this was possible, the energy gain EB of Bob might have no cost.
However, if so, the total energy of the chain system becomes equal to �EB
and negative, as depicted in �gure 29.

Figure 29: Schematic �gure show ing impossib ility of w ithdraw ing the input energy completely by A lice.

Meanwhile, we know that the total energy must be nonnegative. Hence,
Alice cannot withdraw energy larger than EA �EB only by her local opera-
tions. The main reason for Alice�s failure is that the �rst local measurement
of A breaks the ground-state entanglement between A and all the other
subsystems. In particular, in the case with projective measurements, the
post-measurement state is an exact separable state with no entanglement
between A and the other subsystems. If Alice wants to recover the original
state with zero energy, she must recreate the broken entanglement. However,
entanglement generation, in general, needs nonlocal operations [21]. There-
fore, Alice cannot recover the state perfectly by her local operations alone.
Thus, a residual energy inevitably remains around A inside the chain system.
This interesting aspect poses a related problem about residual energy of local
cooling. Let us imagine that we stop the QET protocol soon after Alice�s
measurement, and attempt to completely withdraw EA by local operations.
By the same argument as above, it can be shown that this attempt never
succeeds because the measurement already breaks the ground-state entan-
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glement. As in the upper part of �gure 30, A at site nA is entangled with
other subsystems in the ground state with zero energy.

Figure 30: In the upp er part of the �gure, a subsystem A is entangled b etween other subsystem s in the ground state

w ith zero energy. This entanglem ent is broken by the m easurem ent of A and A jumps into a pure state. The

post-m easurem ent state of the chain system is not the ground state but instead an excited state carry ing p ositive energy

as dep icted in the m iddle part of the �gure. Even if an arb itrary lo cal op eration is p erform ed on A , the broken

entanglem ent cannot b e recovered and nonvanish ing energy remains inside the chain system , as dep icted in the lower

part of the �gure.

This entanglement is broken by the projective measurement of A, when A
jumps into a pure state. The post-measurement state of the chain system is
not the ground state but instead an excited state carrying EA, as depicted
in the middle part of �gure 30. Even if an arbitrary local operation UA is
performed on A, the broken entanglement cannot be recovered and nonvan-
ishing energy remains inside the chain system, as depicted in the lower part
of �gure 30. For a long time interval beyond the short-time scale of this
protocol, it is actually possible to extract EA by local operations with the
assistance of dynamical evolution induced by the nonlocal Hamiltonian H.
However, in the short time interval we considered, this dynamical evolution
is not available. Therefore, we conclude that the minimum value Er with
respect to short-time local-cooling operations is always positive. In order
to make the argument more concrete, let us consider a general local-cooling
operation on A after Alice�s measurement obtaining the measurement result
�. It is known [21] that the operation is generally expressed by the use of
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�-dependent local Kraus operators KA(�; �) at site nA satisfyingX
�

Ky
A(�; �)KA(�; �) = IA: (45)

Then the quantum state after this local cooling of A is given by

�c =
X
�;�

KA(�; �)MA (�) jgihgjM y
A (�)K

y
A(�; �): (46)

The minimum value Er of the residual energy in terms of KA(�; �) satisfying
Eq. (45) is de�ned as

Er = min
fKA(�;�)g

Tr [�cH] : (47)

For example, evaluation of Er is performed analytically in the critical Ising
spin model in Eq. (43). The result is obtained in [4] and given by

Er =

�
6

�
� 1
�
J > 0:

Alice cannot extract this energy by any short-time local operation, even
though it really exists in front of her. Because of the nonnegativity of H, it
is easily noticed that Er is lower bounded by the teleported energy EB.
It is worth noting that energy can be extracted simultaneously via QET

from not only B but also other subsystems if we know the measurement
result of A. In �gure 31, Alice stays at n = 0 and performs the measurement
of A.

Figure 31: Illustration of quantum energy d istribution .
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She announces the measurement result � to other sites. Then we can simul-
taneously extract energy from many distant sites by local unitary operations
Un(�) dependent on � at site n with jnj � 5. This extended protocol is
called quantum energy distribution (QED for short). It is also proven [4]
that the energy input EA during the measurement of A is lower bounded by
the sum of the teleported energies extracted from other distant sites. There-
fore, analogically speaking from the operational viewpoint, the input energy
EA is stored in a form that can be compared to a broad oil �eld. If we are
authorized users who know the �password��, we are able to simultaneously
extract energy as oil from the quantum system, the oil �eld, at many sites
distant from A.
In the conventional forms of energy transportation, impurities in the chan-

nel generate heat when the energy carriers pass through the channel. Thus,
time scale of energy transportation becomes the same order of that of heat
generation. Meanwhile, in QET, because it is not energy but classical infor-
mation that is sent, the intermediate subsystems along the channel between
the sender (Alice) and the receiver (Bob) are not excited by the energy car-
riers of the system during the short time of a QET process, as depicted in
�gure 32.

Figure 32: Comparison b etween more conventional energy transp ortation and QET .

Much after the transportation, dynamical evolution of the system begins and
then heat is generated. Thus, the time scale for e¤ective energy transporta-
tion by QET is much shorter than that of heat generation. This property
is one of the remarkable advantages of QET. Due to this property, QET is
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expected to �nd use as an energy distribution scheme inside quantum devices
that avoids thermal decoherence and would thus assist in the development
of quantum computers.
Because QET is based on the physics of zero-point �uctuations, which are

usually quite small, the amount of teleported energy is generally small. How-
ever, in a practical application of QET for nanodevices, it would be possible
to consider N discrete chains with one-bit measurements as a single QET
channel with N -bit information transfer. Then, the amount of teleported
energy is enhanced by the factor N , as depicted in �gure 33.

Figure 33: M any discrete chains as a single QET channel.

It is trivial that a large amount of energy can be transported via QET by
the use of parallel arrays of many quantum chains.

5 QET with Quantum Field

In section 4, we discussed QET protocols with quantum chains that con-
sist of subsystems discretely arrayed in one dimension. In this section, we
treat a QET protocol with a massless relativistic �eld f in one dimension as
a continuum. For a detailed analysis, see [9] and [11]. We adopt the natural
unit c = ~ = 1. The equation of motion reads
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�
@2t � @2x

�
f = 0: (48)

This equation can be exactly solved using the light-cone coordinates such
that

x� = t� x:

Then Eq. (48) is transformed into

@+@�f = 0:

and general solutions of this equation are given by the sum of the left-mover
component f+ (x+) and right-mover component f� (x�):

f = f+
�
x+
�
+ f�

�
x�
�
:

The canonical conjugate momentum operator of f (x) = f jt=0 is de�ned by

�(x) = @tf jt=0

and it satis�es the standard commutation relation,

[f (x) ; �(x0)] = i� (x� x0) :

The left-moving wave f+ (x+) can be expanded in terms of plane-wave modes
as

f+
�
x+
�
=

Z 1

0

d!p
4�!

h
aL!e

�i!x+ + aLy! e
i!x+

i
;

where aL! (a
Ly
! ) is an annihilation (creation) operator of a left-moving particle

and satis�es h
aL! ; a

Ly
!0

i
= � (! � !0) : (49)

The right-moving wave f� (x�) can also be expanded in the same way using
the plane-wave modes. The energy density operator is given by

"(x) =
1

2
: �(x)2 : +

1

2
: (@xf(x))

2 :;

where :: denotes the normal order of creation�annihilation operators for the
plain-wave modes. The Hamiltonian is given by H =

R1
�1 "(x)dx. The
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eigenvalue of the vacuum state has been automatically tuned to be zero due
to the normal ordering in "(x):

Hj0i = 0:

The vacuum state also satis�es

aL!j0i = 0;
h0j" (x) j0i = 0:

Let us introduce the chiral momentum operators as

��(x) = � (x)� @xf(x):

Then the energy density can be rewritten as

" (x) =
1

4
: �+ (x)

2 : +
1

4
: �� (x)

2 : : (50)

We perform a QET protocol for the vacuum state j0_i as follows: Let
us consider a probe system P of a qubit located in a small compact region
[xA�; xA+] satisfying xA� > 0 in order to detect zero-point �uctuations of
f . In a manner similar to that of Unruh [23], we introduce a measurement
Hamiltonian between f and the qubit such that

Hm(t) = g(t)GA 
 �y;

where g(t) is a time-dependent real coupling constant, GA is given by

GA =
�

4
+

Z 1

�1
�A(x)�+ (x) dx; (51)

�A(x) is a real function with support [xA�; xA+], and �y is the y-component
of the Pauli operator of the qubit. Alice stays in the region [xA�; xA+].
We assume that the initial state of the qubit is the up state j+i of the z-
component �z. In the later analysis, we choose a sudden switching form
such that g(t) = �(t). After the interaction is switched o¤, we measure the
z-component �z for the probe spin. If the up or down state, j+i or j�i, of
�z is observed, we assign � = + or � = �, respectively, to the measurement
result. The measurement is completed at t = +0. The time evolution of this
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measurement process with output � can be described by the measurement
operators MA(�), which satisfy

MA(�)�MA(�)
y = Tr

P

�
(I 
 j�i h�j)U(+0) (�
 j+i h+j)U(+0)y

�
;

where � is an arbitrary density operator of the �eld, the time evolution
operator U(+0) = T exp

h
�i
R +0
�0 Hm(t

0)dt0
i
generated by the instantaneous

interaction is computed as exp [�iGA 
 �y], and the trace TrP is taken to
the probe system. The measurement operators MA(�) are evaluated as

MA(�) = h�j exp [�iGA 
 �y] j+i :
Hence, we obtain the explicit expression of MA(�) such that

MA(+) = cosGA; (52)

MA(�) = sinGA: (53)

For the vacuum state j0i, the emergence probability of � is independent of
� and is given by 1=2 [11]. The post-measurement states of f for the result
� are calculated as

j (�)i =
p
2MA(�)j0i =

1p
2

�
e�

�
4
ij�i+ �e

�
4
ij � �i

�
; (54)

where j � �i are left-moving coherent states de�ned by

j � �i = exp
�
�i
Z 1

�1
�A(x)�+ (x) dx

�
j0i: (55)

The two states j (+)i and j (�)i are nonorthogonal to each other with
h (+)j (�)i = h�j��i 6= 0 because this POVM measurement is not projec-
tive [21]. The measurement is depicted schematically in �gure 34.
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Figure 34: F irst step of a QET proto col w ith a quantum �eld .

The expectation value of the Heisenberg operator of energy density " (x; t)
for each post-measurement state is independent of � and given by

h (�)j" (x; t) j (�)i =
�
@+�A(x

+
�
)2: (56)

Hence, the amount of total average excitation energy is time-independent
and evaluated as

EA =

Z 1

�1
(@x�A(x))

2dx: (57)

The average state at time T is expressed as

�M =
X
�

e�iTHMA(�)j0ih0jMA(�)
yeiTH :

It is worth noting that the state �M is a strictly localized state de�ned by
Knight [24], because �M is locally the same as j0ih0j at t = T and satis�es
Tr [�M" (x)] = 0 for x =2 [xA� � T; xA+ � T ].
Bob stays in the region [xB�; xB+] with zero energy density and is on

Alice�s right-hand side:
xA+ < xB�:

Alice sends information about the result �, to Bob at t = +0 at the speed of
light. Bob receives it at t = T . This is depicted schematically in �gure 35.
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Figure 35: Second step of a QET proto col w ith a quantum �eld .

It should be stressed that the positive-energy wave packet generated by the
measurement propagates to the left from Alice and the information about �
propagates to the right from Alice. Therefore, only classical information is
sent from Alice to Bob. The average energy density of quantum �uctuation
around Bob remains zero at t = T . Then Bob performs a unitary operation
on the quantum �eld f ; the unitary operation is dependent on � and is given
by

UB(�) = exp

�
i��

Z 1

�1
pB(x)�+ (x) dx

�
; (58)

where � is a real parameter �xed below and pB(x) is a real function of x with
its support [xB�; xB+]. After the operation, the average state of the �eld f
is given by

�F =
X
�

UB(�)e
�iTHMA(�)j0ih0jMA(�)

yeiTHUB(�)
y:

Let us introduce an energy operator localized around the region [xB�; xB+]
such that HB =

R1
�1wB (x) " (x) dx. Here, wB (x) is a real window function

with wB(x) = 1 for x 2 [xB�; xB+] and it rapidly decreases outside the region.
The average amount of energy around the region is evaluated [11] as

Tr [�FHB] = ��� + �2�

where � =
R1
�1 (@xpB(x))

2 dx and
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� = � 4
�
jh0j2�ij

Z 1

�1

Z 1

�1
pB(x)

1

(x� y + T )3
�A(y)dxdy: (59)

By �xing the parameter � such that

� =
�

2�

so as to minimize Tr [�FHB], it is proven that the average energy around Bob
takes a negative value, that is,

Tr [�FHB] = �
�2

4�
< 0: (60)

During the operation by Bob, the total average energy decreases by

EB = Tr [�MH]� Tr [�FH] = EA � Tr [�FH] : (61)

Because average energy density at t = T vanishes except in the region of
the wave packet excited by Alice�s measurement and the region of Bob, the
following relation is proven straightforwardly.

Tr [�FH] = Tr [�FHA(T )] + Tr [�FHB] ; (62)

where HA(T ) =
R1
�1wA (x+ T ) " (x) dx and wA (x) is a real window function

for Alice with wA(x) = 1 for x 2 [xA�; xA+] and it rapidly decreases outside
the region. The term Tr [�FHA(T )] in Eq. (62) is the contribution of the
left-moving positive-energy wave packet generated by Alice�s measurement.
By virtue of operation locality, it can be proven that the average energy of
the wave packet remains unchanged after Bob�s operation:

Tr [�FHA(T )] = EA: (63)

Substituting Eq. (62) with Eq. (63) into Eq. (61) yields

EB = �Tr [�FHB] :

According to local energy conservation, the same amount of energy is moved
from the �eld �uctuation to external systems, including the device executing
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UB(�). Therefore, EB is the output energy of this QET protocol. By using
the result in Eq. (60), EB can be evaluated as

EB =
4 jh0j2�ij2

�2

hR1
�1
R1
�1 pB(x)

1
(x�y+T )3�A(y)dxdy

i2
R1
�1 (@pB(x

0))2 dx0
:

The operation by Bob simultaneously generates a wave packet with negative
energy �EB that propagates toward the left-side spatial in�nity. The situ-
ation after the �nal step of the protocol is depicted schematically in �gure
36.

Figure 36: Third step of a QET proto col w ith a quantum �eld .

F igure 37: Spacetim e diagram of a QET proto col w ith a quantum �eld .
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The protocol is summarized in a spacetime diagram in �gure 37. Using
both this protocol and a previous quantum teleportation protocol in [2], it
is possible, in principle, to teleport an object with energy to a zero-energy
local-vacuum region like the above region [xB�; xB+].
It is worthwhile to comment that an analogous QET protocol to this

protocol would be experimentally implimented by using quantum Hall edge
currents [12]. The edge current can be described by a one-dimensional quan-
tum scalar �eld like the system discussed in this section. The most striking
feature of this experimental proposal is that the output energy of the QET
protocol may be of order of 100�eV , which can be observed using current
technology.

6 Summary and Comment

New protocols for quantum energy teleportation (QET) are reviewed that
can accomplish energy transportation by local operations and classical com-
munication. The protocols do not violate any physical laws, including causal-
ity and local energy conservation. The salient features of QET are ground-
state entanglement of many-body systems and the emergence of negative
energy density due to this entanglement. Research on QET is expected to
assist in the development of quantum nanodevices, including quantum com-
puters. In addition, QET may shed light on fundamental physics, including
quantum Maxwell�s demons, phase transition at zero temperature, and the
origin of black hole entropy.
Finally, a comment is added on energy�entanglement relations in QET.

As a quantitative entanglement measure, negativity is computed between
separated blocks of qubit chains [25] (the logarithmic negativity for har-
monic oscillator chains [26] [8]) showing that at criticality, this negativity
is a function of the ratio of the separation to the length of the blocks and
can be written as a product of a power law and an exponential decay. This
suggests, for the arguments in section 4, that change in the entanglement
between A and B after a local measurement of A has a similar rapid-decay
dependence on the spatial separation. Thus, it may be concluded that bipar-
tite entanglement between A and B itself is not essential for QET. Though
the bipartite entanglement between the two may be rapidly damped, EB
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shows a power law decay (/ n�9=2) for large spatial separation n at criti-
cality, as seen in Eq. (44). In a sense, this implies that an almost classical
correlation between A and B is su¢ cient to execute QET for large sepa-
ration, and is expected to be robust against environmental disturbances in
contrast to the entanglement fragility in the previous quantum teleportation
scheme. It should be emphasized, however, that this classical correlation is
originally induced by the ground-state multipartite entanglement generated
by nearest-neighbor interactions. If the ground state is separable, we have
no correlation between A and B. This suggests that teleporting a positive
amount of energy requires some amount of ground-state entanglement. In
fact, for the minimal model of QET discussed in section 3, we have nontriv-
ial energy�entanglement relations. Let us consider a set of POVM measure-
ments for A which measurement operators MA(�) with measurement output
� commute with the interaction Hamiltonian V in the minimal model. These
measurements do not disturb the energy density at B in the ground state.
Entropy of entanglement is adopted as a quantitative measure of entangle-
ment. Before the measurement of A, the total system is prepared to be in the
ground state jgi. The reduced state of B is given by �B = TrA [jgihgj]. The
emergent probability pA(�) of � is given by hgjMA(�)

yMA(�)jgi. After the
POVM measurement outputting �, the reduced post-measurement state of
B is calculated as �B(�) = 1

pA(�)
TrA

�
MA(�)jgihgjMA(�)

y�. The entropy of
entanglement of the ground state is given by �TrB [�B ln �B] and that of the
post-measurement state with output � is given by �TrB [�B(�) ln �B(�)]. By
using these results, we de�ne the consumption of ground-state entanglement
by the measurement as the di¤erence between the ground-state entanglement
and the averaged post-measurement-state entanglement:

�SAB = �Tr
B
[�B ln �B]�

X
�

pA(�)
�
�Tr

B
[�B(�) ln �B(�)]

�
:

For any measurement which satis�es [MA(�); V ] = 0, the following relation
holds [6]:

�SAB �
1 + sin2 &

2 cos3 &
ln
1 + cos &

1� cos &
maxEBp
h2 + k2

; (64)

where & is a real constant �xed by the coupling constants of the minimal
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model such that

cos & =
hp

h2 + k2
; sin & =

kp
h2 + k2

:

maxEB is the maximum output energy of QET in terms of the local operation
of B dependent on �. Eq. (64) implies that a large amount of teleported
energy really requests a large amount of consumption of the ground-state
entanglement between A and B. It is also noted that for a QET model with a
linear harmonic chain, we have a similar relation between teleported energy
and entanglement [8]. Consequently, it can be said that the ground-state
entanglement really gives birth to QET from the point of view of information
theory [27]. The ground-state entanglement is a physical resource for energy
teleportation.
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